

www.FirstRanker.com

www.FirstRanker.com

Roll No.	Total No. of Pages: 02
----------	------------------------

Total No. of Questions: 09

B.Tech.(EIE) (2011 Onwards) (Sem.-6)
DIGITAL SIGNAL PROCESSING

Subject Code: EC-310 M.Code: 58034

Time: 3 Hrs. Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
- SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

O1. Answer briefly:

- a) What do you mean by the terms: signal and signal processing?
- b) Differentiate between a digital signal processor and a microprocessor?
- c) How the aliasing is avoided in digital signal processing?
- d) Differentiate between a static and a dynamic system?
- e) Sketch the signal u(-n + 4).u(n).
- f) What is the floating point concept in DSP?
- g) Distinguish between the Fourier series and Fourier transform.
- h) What is frequency wrapping?
- i) Explain Parseval's theorem.
- j) Determine the periodicity of the signal $x(t) = 4\sin\frac{2\pi t}{7} + 5\sin\frac{2\pi t}{9}$

1 | M-58034

(S2)-198

SECTION-B

- Q2. A system has an impulse response $h(n) = -0.25\delta(n+1) + 0.5\delta(n) 0.25\delta(n-1)$
 - (a) Is the system BIBO stable?
 - (b) Is the system causal? Justify your answer.
- Q3. Find the inverse z-transform of $X(z) = \frac{1}{1 0.8z^{-1} + 0.12z^{-1}}$ if ROC is |z| > 0.6
- Q4. A causal system is presented by the following difference equation :

$$y(n) + \frac{1}{4}y(n-1) = x(n) + \frac{1}{2}x(n-1)$$

Find the impulse response of the system

- Q5. Compute the DFT of the sequence x(n) = {0,1,2,3}.
- Q6. Compare the characteristics of the various types of analog filters.

SECTION-C

Q7. Find the direct form-II and form-II realization for the system described by the difference equation

$$y(n) = x(n) + 0.5x(n-1) + 0.4x(n-2) - 0.6y(n-1) - 0.7y(n-2)$$

- Q8. Design a linear phase low pass FIR filter with 7 taps and a cut off frequency of 0.3π radians using frequency sampling method.
- Q9. (a) Add +4₁₀ and +0.375₁₀ by floating point addition. Choose 10 bit floating point format with 7-bits for mantissa and 3 bits for exponent.
 - (b) Explain the generic architecture of a digital signal processor.

NOTE: Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

2 M-58034

(S2)-198