Roll No.				Total No.	of Pages :	: 03
					• 	

Total No. of Questions: 09

B.Tech.(Aerospace Engg.) (2012 Batch) (Sem.-6) FINITE ELEMENT METHODS

Subject Code: ASPE-313 M.Code: 72458

Time: 3 Hrs. Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

- 1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
- 3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.
- 4. Assume suitably missing data if any.

SECTION-A

1. Answer briefly:

- a. Write the expression of six strain components in terms of displacements.
- b. Differentiate between natural and Cartesian coordinate systems.
- c. Explain the kinematically admissible displacement field term as being used in FEM.
- d. Explain plain stress condition with one example.
- e. Draw eight noded quadrilateral element in Cartesian and natural coordinate systems.
- f. Explain Lagrange's shape functions/elements.
- g. What is carried out in the processing module of FEM software?
- h. What is super-parametric type of Finite Element formulation?
- i. Write the equation of 2-D heat conduction problem in terms of temperature (T), thermal conductivity (k) and heat source/sink (Q).
- j. Differentiate between complex and multiplex elements with examples.

SECTION-B

- 2. Explain the principle of minimum potential energy and virtual work with their relevant equations.
- Derive the transformation matrix for a 2-D truss element which transforms elemental 3 local displacement to elemental global displacement.
- 4. Explain convergence in reference to Finite Element Method. Also explain the different conditions to achieve the same
- 5. Derive the stress-strain matrix for plane stress conditions from the basic concept.
- For 1-D bar element, transformation is given as $\xi = \left(\frac{2}{x_2 x_1}(x x_1) 1\right)$ which is used to 6. relate x and ξ Let the displacement field is interpolated as $u(\xi) = N_1q_1 + N_2q_2$ where $N_1 = \cos\left(\frac{\pi(1+\xi)}{4}\right)$ and $N_2 = \cos\left(\frac{\pi(1-\xi)}{4}\right)$. Plot the shape functions and develop the strain-displacement matrix. Also develop elemental matrix (you need not to evaluate the integrals). SECTION-C

- Explain the Finite Element modeling and shape function for linear interpolation of 7. temperature field (1-D heat transfer element).
- 8. For the two-bar truss as shown in Fig. 1, determine the displacement of node 1. Assume mm².Assume for both members GPa and

$$k = \frac{A_e E_e}{L_e} \begin{vmatrix} l^2 & lm & -l^2 & -lm \\ lm & m^2 & -lm & -m^2 \\ -l^2 & -lm & l^2 & lm \\ -lm & -m^2 & lm & m^2 \end{vmatrix}$$
 where l and m have usual meanings.

Fig. 1

2 M-72458 (S2)-1622

9. A Constant Strain Triangle (CST) element is shown in **Fig. 2.** The element is subjected to a body force $f_x = x^2$ N/cm³. Determine the nodal force vector due to the body force. Assume element thickness as 1 cm. The coordinates in the **Fig. 2** are given in cm.

Fig. 2

NOTE: Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

3 M-72458 (S2)-1622