FirstRanker.com

www.FirstRanker.com

Ha	all Ticket No	Question Paper Code: CMB011
	MBA III Semester End Examinations (Supplem-	entary) - April, 2019
	Regulation:R16	
	Quantitative Analysis for Busines	s Decisions
Fime	e: 3 Hours (MBA)	Max Marks: 70
	Answer ONE Question from ea	ch Unit
	All Questions Carry Equal M	larks
	All parts of the question must be answered	l in one place only
	UNIT – I	
1. (:	(a) Describe the different steps followed in OR Model to prov	ide better solution. [7M]
	b) List important Features and limitations of OR solutions.	[7M]
2. (:	(a) State and explain classification of different Models availab	ble in Practice. [7M
	b) Explain the origin of OR in brief and write to application	s. [7M
	UNIT – II	
3. 6	(a) A company is producing three products A,B and C. For	nulate an LPP model to maximise the
	Profit for the following collected data given in Table 1;	[7M]
	Table 1	
	Factor A B C	Availability

Factor	А	В	С	Availability
Selling Price/unit	500	300	400	
Raw Material /unit	15 units	5 units	10 Units	more than 2000 units
Labor Hours/Unit	8	4	5	Less than 1200Hrs.
Machine Hours/Unit	- 4	2	3	200 Hrs.

(b) Solve the following LPP by graphical method

Max Z=5x+3y Subject to constraints $2x+y \le 1000$ $x\le 400$ $y\le 700$ $x,y\ge 0$ [7M]

FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

4. (a) Find the non-degenerate Initial solution by VAM to the following TPM Table 2. [7M]

Factory/ Warehouse	W1	W2	W3	Supply
Α	6	- 4	1	50
В	3	8	7	40
С	-4	- 4	2	60
Demand	20	95	35	

(b) Is the following Initial solution given in Table 3 is Optimal? Check using MODI method [7M]

	Table 3				
From/ To	W1	W2	W3	Supply	
А	6	4(15)	1(35)	50	
В	3(20)	8(20)	♦ 7	-40	
С	4.1	4(60)	2	60	
Demand	20	95	35		

	П'	. II	

- 5. (a) Describe the steps in solving a Maximisation Assignment model by Hungarian method. [7M]
 - (b) Find the optimal solution to following Maximisation assignment problem given in Table 4. (sales in 000 value) Find the operation of the second seco

[7M]

	Α	в	С	D	E
W1	32	38	-40	28	-40
W2	-40	24	28	21	- 36
W3	-41	27	- 33	- 30	- 37
W4	22	38	41	36	- 36
W5	29	33	-40	35	- 39

- www.FirstRanker.com

- (a) Describe the Travelling Salesman model with one example.

		-	
		- 3	

	А	В	С	D
А	X	12	17	- 3
в	12	X	6	3
С	17	6	Χ	7
D	3	3	7	Χ

UNIT - IV

- (a) With an example describe the Criterion of Pessimism
 - (b) Solve the following Table 6 using Min-Max regret criterion values given in Lakhs...

Strategies Nature	S1	S2	S3
NI	17	13	12
N2	15	14	10
N3	13	15	13

- 8. (a) Discuss the various types of decision making environments in detail along with different decision making techniques. [7M]
 - (b) The following information given in Table 7 available related to a Rental car system. Cars have fixed cost of Rs. 400/- per day and variable cost of Rs.800. If the rental car owner has 4 vehicles, what are its daily expectations? If it is required to start new business without any cars how

[7M]

Number of cars demand	0	1	2	3	- 4
Probability	0.1	0.2	0.3	0.2	0.2

Table 7

[7M] [7M]

www.FirstRanker.com

[7M]

[7M]

FirstRanker.com

www.FirstRanker.com

UNIT – V

9.	(a)	Describe the	operating chara	acteristics of Queu	ing system wi	th an example	[7M]
	(b)	Describe the	various service	process followed in	n practice with	h one example .	[7M]

- 10. (a) What is queue system and explain various applications of queuing models. [7M] Arrivals at Railway Ticketing booth are considered to be Poisson with an average time of 5 minutes between one arrival and next. The length of service is assumed to be exponentially distributed with a mean time of 4 Minutes. [7M]
 - i. What is the probability that a person arriving at the ticket booth will have to wait?
 - ii. What is the average length of queue?
 - iii. What is the expected number of customers in the system?
 - iv. If the average time spent by customer in queue is more than 5 minutes a second Ticket booth will be operated. Is second Ticket booth is required?

Hotranker. C