

www.FirstRanker.com

www.FirstRanker.com

Duration 3 hours

Total 100 marks

(05)

N.B: 1	Questic	on No. 1 is c	compulsory.
11121	V	O11 1 10. 1 10 C	, offip and of , .

- 2) Attempt any four out of remaining six questions.
- 3) Figures to the right indicate full marks.
- 1. (a) Let $A=\{3,5,9,15,24,45\}$ and relation R be defined on B by ${}_xR_y$ if and only if

"x divides y". Show that R is a partial order relation

- 1.Draw the diagraph and Hasse diagram of R
- 2. Determine all minimal & all maximal elements.
- 3. find all least and greatest elements.
- 4. Give upper bounds and LUB of $A=\{3,5\}$
- 5. Give all lower bounds and the GLB = $\{15,45\}$
- (b) (i) Establish the following result using truth tables. (05) $(P \land Q) \leftrightarrow (\neg RvQ) \lor P$
 - (ii) What is the solution of the recurrence relation $a_n = a_{n-1} + 2a_{n-2}$, with initial condition $a_0 = 2$, $a_1 = 7$ (05)
- 2. (a) (i) Write converse, inverse and contra positive of the following statement. (05)
 - "If weather will not be good then I will not travel."
 - (ii) Obtain the disjunctive normal form of $(P->Q)^{(\neg P^{\vee}Q)}$ (05)
 - (b) (i) Find Δa_n where $a_n = n^2 + n + 1$ where Δ denotes forward difference. (05)
 - (ii) For the set $A = \{a,b,c\}$ give all the permutations of A. Show that the set of all permutations of A is a group under the composition operation.
- 3. (a) Obtain the recurrence relation and initial conditions to find the maximum number of regions defined by n lines in a plane. Assume that the lines are not parallel and lines not intersecting at one point when n>2. Solve the recurrence relation.
 - (b) (i) Draw the transition state diagram of the finite state machine $M=(S,I,O,\delta,\lambda,s_0)$ given in the table

0 45	2 1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	\$	λ			
700	a	b	а	b		
S_0	S_1	S_2	X	y		
S_1	S_3	S ₂ S ₁	y	Z		
S_2	S_1	$egin{array}{c} S_0 \ S_2 \end{array}$	Z	X		
S_3	S_0	S_2	\mathbf{z}	X		

- (ii) Explain with suitable example:- (1) Predicate (2) Proposition (05)
- 4. (a) Determine whether the relation R on a set A is reflective ,irreflective, asymmetric, antisymmetric or transitive.

 A = set of all positive integers, ${}_{a}R_{b}$ iff $a \le b+1$

67799 Page **1** of **2**

www.FirstRanker.com

www.FirstRanker.com

- (b) (i) Show by mathematical induction, that for all $n \ge 1$, (05) $1+5+9+\cdots+(4n-3)=n(2n-1)$
 - (ii) Let G be a group. Show that the function $f:G \rightarrow G$ defined by $f(a) = a^2$ is a homomorphism iff G is abelian.
- 5. (a) (i) Let T be set of even integers. Show that the semigroups (Z,+) and (05) (T,+) are Isomorphic, where Z is a set of integers.
 - (ii) For the grammar specified below describe precisely the language,L(G),produced. Also give the corresponding syntax diagram for the productions of the grammar. G=(V,S,v₀,|→)

 V = {v₀,a,b}, S = {a,b}

 v₀|→aav₀, v₀|-> a, v₀|→b
 - (b) (i) perform the following i) $0111 \times 1010 = ?$ ii) $(413)_8 = (?)_{10}$ iii) $10100 \div 100 = ?$ iv) $(1101)_2 - (1001)_2 = ?$ v) $(49.25)_{10} = (?)_2$
- 6. (a) (i) Determine the validity of the following argument using deduction method:

 "If I study then I will pass examination. If I do not go to picnic then I will study. But I failed examination. Therefore, I went to picnic"
 - (ii) Let G be a group and let 'a' be a fixed element of G. show that the function f_a:G→G defined by f_a(x) =axa⁻¹ for x∈G is an isomorphism.
 - (b) (i) $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$ Let $H = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ be a parity check matrix. $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

Determine the group code e_H : B^2 --> B^5 . How many errors will the above group code detect.

- (ii) Let $A=\{1,2,3,4\}$. For the relation $R=\{(1,1),(1,4),(2,2),(3,3),(2,1),(4,4) \text{ find the matrix of transitive closure by using Warshall's algorithm.}$ (05)
- 7. (a) Show that (2,5) encoding function e:B²--> B⁵ defined bye(00)=00000,e(01)=01110,e(10)=10101, e(11)=11011 is a group code.

Decode the following words with maximum likelihood technique: i)11110 ii)10011

(b) Find the particular solution of $a_r + 5a_{r-1} + 6a_{r-2} = 3r^2$. (10)

67799 Page **2** of **2**