www.FirstRanker.com

www.FirstRanker.com

(Time: 3 hours) [Total Marks: 75]

Please check that you have got the correct question paper.

Ν	l. I	3	.:	(1	.)	A	<u>II</u>	qı	ies	tion	S	are	(comp	ulse	ory	•
---	------	---	----	----	----	---	-----------	----	-----	------	---	-----	---	------	------	-----	---

- (2) Make <u>suitable assumptions</u> wherever necessary and <u>state the assumptions</u> made.
- (3) Answers to the same question must be written together.
- (4) Numbers to the **right** indicate **marks**.
- (5) Draw <u>neat labeled diagrams</u> wherever <u>necessary</u>.
- (6) Use of Non-programmable calculators is allowed.

SECTION - I

I.					2014	2/2/2/2	CAN CALO	425	7.86, 97.0V	4000	$\mathcal{O}(\mathcal{O})$		
a.	When S	imulation	is not ar	n appropi	riate tool	?		10 45 P.	5,000	50 4 65 V	7		
b.	List the	application	on areas/	Industry	domains	of simul	ation?	F. F. WOLL	\$ \\ \partial \qua		6		
					SSS C	R			OF SIST	3,36,37			
1.				5	12 C C C	3,45,55	(A) (A) (A)		STE BOLD	2 P			
a.	Explain	the terms	s: (a) enti	ty (b) att	ribute (c) activity	(d) even	t (e) state	e in the s	ystem	7		
	simulati	on contex	kt?	3,37	7 4 5 5	X 5 0 0		40,00		<u> </u>			
b.	Determine the hypothesis of independence for runs above or below the mean for the												
	sequence of 40 numbers given below:												
	0.41	0.68	0.89	0.94	0.74	0.91	0.55	0.62	0.36	0.27			
	0.19	0.72	0.75	0.08	0.54	0.02	0.01	0.36	0.16	0.28			
	0.18	0.0.1	0.95	0.69	0.18	0.47	0.23	0.32	0.82	0.53			
	0.31	0.42	0.73	0.04	0.83	0.45	0.13	0.57	0.63	0.29			

Also $\alpha = 0.05 \text{ Z}_{\Omega} = 1.96$ and mean = 0.495

2.

3.

3.

The number of cyclones hitting the coast of Odisha has a Poisson distribution with a a. mean of 0.8.

i) What is the probability that more than two cyclones will hit the Odisha coast in a year?

ii) What is the probability that only one cyclone will hit the coast in a year?

Explain any two discrete distributions and give the equation for probability mass function. Also, calculate mean and variance of same.

2. What is the inverse transform technique? Explain how it is used for producing random variants for exponential distribution and uniform distribution.

Explain the properties of random number & its consequences. b.

Explain goodness of fit test with examples. a.

State the four steps involved in the development of an input model? b.

What are the types of simulations with respect to output analysis? a.

6 Describe in detail the three steps approach for model validation? b. 6

[TURN OVER]

7

6

7

6

6

6

73251 Page 1 of 2

www.FirstRanker.com

SECTION I

4.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	D. A.							
a.	Why COM is better than C++? Justify your answer	7							
b.	What is distributed object system? Explain the evolution of distributed object system 6								
	OR STANGER								
4.		3/2/2							
a.	What is difference between 2 tier architecture and multi-tier architecture system?	7							
b.	What is COM Interface definition language (IDL)? Explain the syntax for defining	86							
υ.	COM methods is used in Interface Definition Language (IDL).	730							
	COM methods is used in interface Definition Early age (1DL).	10 P							
5.		\$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \							
a.	What is an IUnknown Interface? Explain the three methods of IUnknown Interface	6							
b.	It is better if we separate interface and COM implementation? Why?								
•	OR 2 8 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5								
5.	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\								
a.	Explain the COM Activation Model using Service Control Manager(SCM) with the help	6							
u.	of a diagram	U							
b.	Write short note on: i) MTA and RTA ii) Cross Apartment.	6							
υ.	write short note on. 1) with and Kin 11) Cross Apartment.	U							
6.									
a.	What is a role of stub and skeleton in CORBA architecture? Explain with suitable	6							
	diagram	v							
b.	What is Java Native Interface (JNI)? Explain the step for creating a java native method	6							
υ.	with an example	U							
6.		6							
a.	What do you mean by Object Web? Explain with example.								
b.	What is object activation? Explain the concept of In-process and Out-process activation.	6							
<i>-</i> .	"That is object activation. Explain the concept of in process and out process activation.								