

LEARNING OBJECTIVES

- 1. To study the structure of blood and lymphatic vessels.
- To co-relate histology of these structure with their functions.
- To identify various types of blood vessels in a given slide.

CIRCULATORY SYSTEM

Heart Blood vessels

Two separate loops:

- 1. Pulmonary Circuit
- 2. Systemic Circuit

3 MAJOR BLOOD VESSELS

- Arteries- arterioles
- Capillaries
- Veins venules

Arteries carry blood away
from the heart
Veins carry blood towards
the heart

GENERAL STRUCTURE OF VESSELS

Three layers

Tunica intima - intima Artery Wa
 Tunica media - smooth muscle

3. Tunica externa - adventitia

GENERAL STRUCTURE OF VESSELS

The Structure of an Artery Wall

3 TUNICAE

TUNICA INTIMA

- Endothelium Mechanical support Channels Tight junctions, gap junctions
- ■Basal lamina

Internal elastic lamina

TUNICA MEDIA

- ■Smooth muscle
- **■**Circumferential smooth
- ■Some connective tissue

endothelium

LUMEN

Connective tissue fibres- collagen type?

Elastic fibres- fenestrated sheets

TUNICA ADVENTITIA

ARTERIES

Specialisation

- pressure generated during systole
- regulation of blood supply to the target tissues of the arteries.

Elastic arteries

Muscular arteries

ELASTIC ARTERIES

- Expand
- Recoil- additional force
- Propagates blood
- Dampens pressure
- Eg. Aorta and its branches

MUSCULAR ARTERY

- Change in diameter and
- Regulate flow to organs
- Internal and external elastic lamina clearly seen

Eg. Coronary artery

ARTERIOLES

- 100 micron diameter
- No internal elastic lamina

- Terminal arterioles- less than 50 micron -12 micron
 - meta-arterioles (precapillary sphincter)
 - capillaries

CAPILLARY BED

IDENTIFY

CAPILLARIES

- 8 micron
- Universal function
 - Oxygen and nutrient delivery
 - CO2 and nitrogenous waste removal

 - Single layer of endothelial cellssurrounded by basal lamina
- Pericytes

CAPILLARIES

Skin
Connective tissue
Muscle
Lung
Brain

Renal glomeruli Intestinal villi Endocrine glands pancreas Spleen
Liver
Adrenal cortex
Hypophysis
Parathyroid gland

ARTERIOVENOUS ANASTOMOSIS

VENULES

- **2**0-30 micron
- Endothelium
- Basal lamina
- Thin adventitia
- Permeable wall

VEINS

Veins are larger than arteries

Thin walled

More collagen in tunica media

Less elastic tissue

Tunica adventitia thicker than tunica media

VALVES

- Allow glow towards heart
- Prevent backflow
- Most abundant in legs
- Muscular contraction helps

VASA VASORUM

SOME DISEASES

Atherosclerotic cardiovascular disease

- Cerebrovascular disease affects brain, strokes
- Coronary artery disease (CAD) arteries of heart
- Peripheral vascular disease (PVD) arterial

Affecting veins

- Chronic venous insufficiency
- Deep venous thrombosis (DVT)

Aneurysms

Portal hypertension

Hypertension

LYMPHATIC SYSTEM

- One way system: to the heart
- Return excess tissue fluid and leaked proteins
- "Lymph" is this fluid
- Edema results if system blocked or surgically removed

LYMPH CAPILLARIES

- Greater permeability
- Endothelium
- Basal Lamina Absent
- No pericytes
- No connective tissue
- Absent in avascular tissues

LYMPHATIC VESSELS

- Similar to blood vessels (3 layers), but thin & delicate
- Superficial skin with superficial veins
- Deep trunk and digestive viscera with deep arteries
- Very low pressure
- Drain into lymph nodes

www.FirstRanker.com