

Study Of Derived Lipids

Study Of Fatty Acids

FATTY ACIDS (FAs)

Class- Derived Lipids

BASIC COMPONENT OF LIPID FORMS

What are Fatty Acids?

Fatty Acids Are Derived Lipids

- Fatty acids are of Class Derived Lipids:
 - -Since Fatty acids are Hydrolytic products of Simple and Compound Lipids.

Fatty Acids (FA)

- Fatty Acids (FA) are relatively or potentially related to various Lipid structures.
 - -Simple Lipids
 - -Compound Lipids
 - Derivatives of Lipids

Structure And Chemical Nature Of Fatty Acids

Chemical Structure Of Fatty Acids

Fatty acid Structures Has Varied Hydrocarbon Chains

 The Hydrocarbon chain of each Fatty acid is of varying chain length (C2 - C26).

Human Body Fatty Acid From C2-C26

S.No	Fatty Acid Name	Fatty Acid Structure has Carbon atoms
1	Acetic Acid	C2
2	Propionic Acid	C3
3	Butyric Acid	C4
4	Valeric Acid	C5
5	Palmitic	C16
6	Stearic	C18
7	Oleic www.	Filst Rauber.com

	www.FirstRanker.co	om www.FirstRanker.com
S.No	Fatty Acid Name	Fatty Acid Structure
8	Linoleic Acid	C18
9	Arachidic Acid	C20
10	Arachidonic Acid	C20
11	Behenic acid	C22
12	Lignoceric acid	C24
13	Cerotic acid	C26

Fatty acid structure have two ends:

- Carboxylic group(-COOH) at one end (Delta end denoted as $\Delta/Alpha$ end α)
- Methyl group (-CH3) at another end (Omega end denoted as ω)

Carboxylic Acid Functional Group Of Fatty Acid

Definition of Fatty acids

Fatty Acids are Defined as:

- Fatty acids are chemically Organic acids
- With Aliphatic Hydrocarbon chain (of varying length C2 to C26) with Mono terminal Carboxylic acid group as functional group.

Different Forms Of Fatty acids In Body

Free Fatty acid /Unesterified Fatty acid

- Fatty acid who has free Carboxylic group
- Fatty acid not reacted and linked to an Alcohol by an Ester bond.

Esterified Fatty acid/Bound form of Fatty Acid

- Fatty acid has no free Carboxylic group
- Fatty acid is linked to an Alcohol with an Ester bond.

Classification of Fatty acids Biomedically Important Fatty Acids

Based On Six Different Modes:

- Classification of FAs Based on Six Modes:
- 1. Total number of Carbon atoms in a Fatty acid structure
- 2. Hydrocarbon chain length of Fatty acid
- Bonds present in Fatty acid
- 4. Nutritional requirement of Fatty acid
- 5. Chemical Nature and Structure of Fatty acids
- 6. Geometric Isomerism of FUE As.com

Fatty acids Based on Total Number of Carbon atoms

- Even numbered Carbon Atom Fatty acids (2,4,6,8,16,18,20 etc)
- Odd numbered Carbon Atom Fatty acids (3,5,7,---)

- Most naturally occurring /human body Fatty acids are even carbon numbered FAs.
- Since biosynthesis of Fatty acids uses 2
 Carbon units Acetyl-CoA (C2).

- Examples of Even Carbon Numbered Fatty acids:
 - Butyric Acid (C4)
 - Palmitic Acid (C16)
 - Stearic Acid (C18)
 - Oleic Acid (C18) (Most Common)
 - Linoleic acid (C18)
 - Linolenic Acid (C18)
 - Arachidic acid (C20)
 - Arachidonic acid (C20)

- Odd Carbon numbered Fatty acids are less related to human body
- Example of Odd carbon Fatty acid associated to human body
 - -Propionic Acid (3C)

Fatty acids Based on Nature and Number of Bonds present

Fatty Acids

Saturated Fatty Acids

Unsaturated Fatty Acids

Saturated

(a)

Monounsaturated and polyunsaturated fatty acids do not stack well together because they are bent. These fatty acids are liquid at room temperature.

www.FirstRanker.com

- Saturated Fatty acids(SFAs)
- Fatty acids having single bonds in hydrocarbon chain structure.
- Examples:
 - Acetic acid (C2)
 - Butyric acid (C4)
 - Palmitic acid (C16)
 - Stearic acid (C18)
 - Arachidic acid(C20)

- Unsaturated Fatty acids (UFAs)
- Fatty acids having double bonds in its structure.
 - Types of UFAs:
- Monounsaturated Fatty acids (MUFAs)
- Polyunsaturated Fatty acids (PUFAs)

- Human body have no Enzyme system to introduce double bond beyond Carbon atom 10 in the hydrocarbon chain.
- Hence PUFAs are not biosynthesized in human beings.

- Monounsaturated Fatty Acids(MUFAs):
- MUFAs have one double bond in a fatty acid structure
- Examples of MUFAs :
 - Palmitoleic acid (C16:1;9) (ω7)
 - Oleic acid (C18:1;9)(ω9)
 - Erucic acid (C22:1;9)(ω9)

- Poly Unsaturated Fatty Acids (PUFAs):
- UFAs with two or more double bonds in the structure are termed as PUFAs.
 - Examples Of PUFAS:
- Linoleic(18:2;9,12) (ω6)
- Linolenic(18:3;9,12,15) (ω3)
- Arachidonic(20:4;5,8,11,14) (ω6)
- Timnodonic (20:5;5,8,11,14,17) (ω3)
- Cervonic/Docosa Hexaenoic
 acid(DHA)(22:6;4,7,10,13,16,19) (ω3)

- Remember Unsaturated Fatty acids
- Double bonds are:
 - -Weaker /unstable bonds.
 - —Get easily cleavable/metabolized

- —More the degree of Unsaturation in Fatty acids.
- —More is the unstability of Fatty acids.

 Saturated Fatty acids structures are Straight.

 Unsaturated Fatty acids structures are bent (Kink).

fatty acids

(c)

Mixture of saturated and unsaturated fatty acids

(d)

www.FirstRanker.com

- Saturated FAs: with straight structures are tightly packed together.
- Unsaturated FAs: with bent structures are not compact and has no tight packing.

- More the degree of unsaturation in FA/More double bonds in FA structure
- More is the bent of Fatty acid structure.

Fatty acids Based on the Nutritional Requirement

Nutritionally Essential Fatty acids

- -Nutritionally Essential Fatty acids:
- -Fatty acids not biosynthesized in human body and indispensable through nutrition/diet are termed as Essential Fatty acids.
- -PUFAS are nutritionally essential Fatty acids.

Examples of Essential Fatty Acids/PUFAs:

- **—Linoleic**
- –Linolenic
- -Arachidonic acids
- -Timnodonic and
- -Cervonic

Nutritionally Non Essential Fatty acids

- Nutritionally Non essential Fatty acids:
- Fatty acids which are biosynthesized in the body and are nutritionally non essential Fatty acids.
 - Saturated Fatty acids and MUFAs are non essential Fatty acids.

Examples Of Non Essential Fatty Acids

- Palmitic
- Stearic
- Oleic acid

Based on Geometric Isomerism of Unsaturated Fatty acids

Cis Fatty Acids:

The **Groups around double bond** of Unsaturated FAs are on **same side**.

- Examples:
 - Cis Oleic acid (rich in Olive oil)
 - Palmitoleic acid

• Trans Fatty Acids:

- The groups around double bond of UFAs are on opposite side
- Example:
 - Elaidic acid /Trans Oleic acid (Hydrogenated Fats)

$$CH_3[CH_2]_6CH_2$$
 $CH_2[CH_2]_6COOH$ $CH_2[CH_2]_COOH$ $C=C$ $C=C$ $CH_3[CH_2]_6CH_2$ $CH_3[CH_2]_6CH_2$

Types Of Fatty acids Based on Hydrocarbon chain length

- Short Chain Fatty acids (2-6 Hydrocarbon Chain length)
- Examples:
 - Acetic acid (C2)
 - Propionic acid (C3)
 - Butyric acid (C4)
 - Valeric acid (C5)
 - Caproic acid (C6)

- Medium Chain Fatty acids (8-14 Carbon length)
- Examples:
 - Caprylic acid (C8)
 - Capric acid (C10)
 - Lauric acid (C12)
 - Myristic acid (C14)

- Long Chain Fatty acids (16-20 Carbon length)
- Examples:
 - Palmitic acid (C16)
 - Palmitoleic acid (C16)
 - Stearic acid (C18)
 - Oleic acid (C18)
 - Linoleic acid (C18)
 - Linolenic acid (C18)
 - Arichidic acid (C20)
 - Arachidonic acid /ETA(C20)
 - Timnodonic acid/EPA (C20)

- Very Long Chain Fatty Acids (C22 onwards)
 - Examples:
 - Behenic acid/Docosanoic (C22)
 - Erucic acid/Docosa 13 Enoic (C22)
 - Clupanodonic/Docosapentaenoic acid (DPA) (C22)
 - Cervonic acid/DocosaHexaenoic (DHA) (C22)
 - Lignoceric acid /Tetracosanoic (C24)
 - Nervonic /Tetracosaenoic (C24)
 - Cerotic acid/Hexacosanoic (C26)

Fatty acids Based on Chemical Nature and Structure

-Aliphatic Fatty acids:

Straight Hydrocarbon chain

- Examples:
 - -Palmitic acid (C16)
 - -Stearic acid (C18)

Branched Chain Fatty acids:

Possess Branched chains

• Examples:

-Phytanic acid (Butter, dairy products)

- Cyclic Fatty acids :
- Contains Ring structure
- Examples:
 - Chaulmoogric acid

(Used for Leprosy treatment in olden days)

Hydnocarpic acid

- Hydroxy Fatty acids:
- Contain Hydroxyl Groups
- Examples:
 - Cerebronic acid (C24)/
 - 2-HydroxyTetracosanoic acid

— Ricinoleic acid(C18) (Castor oil)

Naming And Numbering Of Fatty Acids

- Every Fatty acids has a:
 - Common Name
 - Systematic Name

- Most of the Fatty acids are known by their common names. (Since easy to use)
- Systematic names of Fatty acids are limited in use. (Since not easy to use)

Remember

 Long chain Fatty acids are also termed as Acyl chains.

- The systematic names of Saturated Fatty acids are named by adding suffix 'anoic'.
- Example : Palmitic acid- C16/ Hexadecanoic acid

- The systematic names of Unsaturated Fatty acids are named by suffix 'enoic'.
- Example: Oleic acid- C18/ Octadecaenoic acid

S.N	Common Name	Systematic Name
1	Palmitic Acid	Hexadec anoic Acid
2	Stearic Acid	Octadec anoic Acid
3	Oleic acid	Octadecaenoic acid
4	Linoleic Acid	Octadecadienoic acid
5	Linolenic Acid	Octadecatrienoic acid
6	Arachidonic acid	Eicosa tetraenoic acid

Numbering Of Fatty Acids

Numbering of Carbon atoms of Fatty acids is done from:

- -Both ends of Fatty acids-
 - • Δ end/ α end
 - •ω end

Numbering Of Fatty acid From Carboxyl/ Δ end (α end)

- From Carboxyl Group end(∆ end):
- Carboxylic acid group of Fatty acid is numbered as C1
- C2 is next adjacent Carbon atom ,
- C3 and so onn.....

 α Carbon atom is next to the functional group –COOH of a Fatty acid.

www.FirstRanker.com

• Next to α Carbon is β, γ,δ ,ε and so onn.

Use of Greek letters to designate carbons

Carbon atoms from Methyl(–CH3)
 group /non polar end(ω) of a fatty
 acid are numbered as ω1,ω2,ω3
 and so onn.

Structure and nomenclature of fatty acids.

ω-terminus

CH₃-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-COOH

10 9 8 7 6 5 4 3 2 1

ω ω1 ω2 ω3 δ γ β α

COOH

Nomenclature Of Fatty acids

- FA Nomenclature is Based On
- Chain length/Total Number of Carbon atoms in a FA.
 - Count Number of Carbon atoms in FA
- Number and Position of Double bonds
 - Position of double bond from Carboxyl/Delta end
 - Position of double bond from Methyl/Omega

Short Hand Representations of Fatty acids

- Short Hand Representations of Fatty acids:
- -Palmitic Acid (16:0)
- -Palmitoleic acid (16:1;9)
- -\
- First digit stands for total number of carbon atoms in the fatty acid.
- · Second digit designates number of double bonds.
- Third digit onwards indicates the position of double bonds.

Fatty-acid Nomenclature

- Named according to chain length
 - **C18**

Fatty-acid Nomenclature

- Named according to the number of double bonds
 - C18:0

Common name: Stearic acid

Fatty-acid Nomenclature

- Named according to the number of double bonds
 - -C18:1

Common name:
Oleic acid

Fatty-acid Nomenclature

- Named according to the number of double bonds
 - C18:2

Common name: Linoleic acid

Fatty-acid Nomenclature

- Named according to the number of double bonds
 - C18:3

Common name: Linolenic acid

Omega System Nomenclature

• Named according to the location of the **first double** bond from the non-carboxyl **Methyl** end (count from the Methyl end /Omega end ω)

Omega Fatty-acid Nomenclature

- -Stearic acid (18:0)
- -Oleic acid (18:1;9)
- -Linoleic acid (18:2;9,12)
- -Linolenic acid (18:3;9,12,15)
- -Arachidonic acid (20:4;5,8,11,14)

- A Fatty acid may also be designated as:
- Linoleic acid (18C; $\Delta^{9,12}$)
- Linolenic acid (18C; $\Delta^{9,12,15}$)
- Δ indicates from COOH end.
- 9,12,15 are double bond positions from delta end.

Short Hand Presentation of FA

```
14:0 Myristic acid
```

16:0 Palmitic acid

18:0 Stearic acid

18:1 cis Δ^9 Oleic acid ($\omega 9$)

18:2 cis $\Delta^{9,12}$ Linoleic acid (ω 6)

18:3 cis $\Delta^{9,12,15}$ α -Linolenic acid (ω 3)

20:4 cis $\Delta^{5,8,11,14}$ Arachidonic acid (ω 6)

20:5 cis $\Delta^{5,8,11,14,17}$ Eicosapentaenoic acid ($\omega 3$)

22:5 Cis $\Delta^{7,10,13,16,19}$ Docosapentaenoic acid ($\omega 3$)

Important Properties Of Fatty Acids

Properties Of Fatty Acids

Physical Properties

Chemical Reactions

Physical Properties Of Fatty Acids

1. Solubility

2. Melting Point

Solubility Of Fatty Acids Depends Upon

Factors Responsible For Solubility Of Fatty Acids

- 1. Hydrocarbon chain length
- 2. Degree of Unsaturation- Number of Double Bonds
- 3. Hydrophobicity/Polarity of Fatty acids
- 4. Polarity of Solvents

- Small hydrocarbon chain length are less hydrophobic and more soluble
- Long Chain FA and VLCFA more hydrophobic are very less soluble
- Solubility of Fatty acids decreases with increase in Fatty acid hydrocarbon chain length.
- Double bonds increases solubility

Melting Point of Fatty Acids

Factors Responsible For Melting Points Of Fatty Acids

- 1. Hydrocarbon chain length
- 2. Nature of Bonds
- 3. Degree of Unsaturation/Number of double bonds

Fatty Acids With Decreased Melting Points

- Short and Unsaturated Fatty acids has low melting point
- More degree of unsaturation low is melting point of FAS

Melting Points

- Affected by chain length
- —Longer chain = higher melting temp

Fatty acid: Melting point:

C12:0 44°C

C14:0 58°C C16:0 63°C C18:0 72°C C20:0 77°C

Melting Points

- Affected by number of double bonds
 - –More saturated = higher melting temp

Fatty acid: C18:0 C18:1 C18:2 C18:3 Melting point: 72°C 16°C -5°C -11°C

Number of carbons	s Common name	Systematic name	Structure	Melting point °C
Saturated				
12	lauric acid	dodecanoic acid	~~~~~~COO	OH 44
14	myristic acid	tetradecanoic acid		OH 58
16	palmitic acid	hexadecanoic acid	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	OH 63
18	stearic acid	octadecanoic acid	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	OH 69
20	arachidic acid	eicosanoic acid	COC	OH 77
Unsaturate	ed			
16	palmitoleic acid	(9Z)-hexadecenoic acid	COC	0 Но
18	oleic acid	(9Z)-octadecenoic acid	COC)Н 13
18	linoleic acid	(9Z,12Z)-octadecadienoic acid	Coo	OH −5
18	linolenic acid	(9Z,12Z,15Z)-octadecatrienoic ac	id COC	OH −11
20	arachidonic acid	(5Z,8Z,11Z,14Z)-eicosatetraenoic	acid	OH -50
20	EPA	(5Z,8Z,11Z,14Z,17Z)-eiEosapenta	er.com _{acid} COC	OH −50

Fatty Acids With Increased Melting Points

- Long and Saturated Fatty acids are has high melting point.
- Less degree of Unsaturation more is melting point of Fatty acids

- Thus melting point of Fatty acids(FAs):
 - —Increases with increase in chain length of FAs.
 - Decreases with decrease in chain length of FAs.
 - –Increases with low unsaturation of FAs
 - Decreases with more unsaturation of Fatty acids

Structures and Melting Points of Saturated Fatty Acids

Name	Carbon Atoms	Structure	Melting Point (°C)	Source
Saturated Fatty Ac	rids		521 143	
Capric acid	10	ОН	32	Saw palmetto
Lauric acid	12	ОН ОН	43	Coconut
Myristic acid	14	OH OH	54	Nutmeg
Palmitic acid	16	~~~~~ <mark></mark> он	62	Palm
Stearic acid	18	~~~~	69	Animal fat
Arachidic acid	20	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	76	Peanut oil, vegetable and fish oils

Timberlake, General, Organic, and Biological Chemistry. Copyright © Pearson Education Inc., publishing as Benjamin Cummings

Chemical Reactions Of Fatty Acids

Types Of Chemical Reactions Of Fatty acids

Reactions due to Carboxyl group of Fatty acids:

- Esterification/Esterified forms of Lipids
- Saponification/Soap Formation

Reactions Associated to Double bonds of Fatty acids:

Halogenation/Addition of Halogens around double bond

Hydrogenation/Transform to UFAs to SFAs

Significance Of Halogenation

 Halogenation of fatty acids is an index of assessing the degree of unsaturation

- Iodine Number is a process of Halogenation which checks the content of SFA and PUFAs of Fats and Oils.
- SFA has zero lodine number.
- PUFAs has high lodine number.

Hydrogenation Of Fatty acids

Alters Geometric Isomerism Of Unsaturated Fatty acids

Transforms Natural Cis Form to Trans Form

Increases Shelf life of PUFAs

All-Cis Fatty acids Good for Health

- Human body contain Enzyme system to metabolize Cis form of Fatty acids.
- Cis forms when ingested through food are easily metabolized and does not retain in the body.
- Hence All –Cis forms are good for health and no risk of Atherosclerosis and CVD.
- All Cis form of fatty acids are unstable and easily metabolizable.

- More content of Trans Fatty acids are found in processed/Refined foods viz:
 - Hydrogenated Oils (Vanaspati Dalda)
 - -Ghee
 - -Margarine
 - —Bakery products /Fast foods
 - Deeply Fried recipes in Oils which are prepared in repeatedly heated oils.

- Trans fatty acids increases risk of
 - - -Atherosclerosis
 - -Cardio Vascular disorders:
 - Ischemia
 - Myocardial Infarction
 - -Stroke(Brain attack)

Message Learnt, Understood And To Be Implemented

For Good Fatty acid metabolism and Significant Health

- Eat natural Cis forms of Fatty acids
- Avoid Hydrogenated Trans Fatty acids
- Eat home made food
- Avoid Processed/Junk Foods

PUFAs And Omega Fatty Acids

Types Of Omega Fatty acids

In Nutrition and Clinical practice

»ω3 Fatty acids

»ω6 Fatty acids

»ω7 Fatty acids

»ω9 Fatty acids

CZZT(DPA)

Omega Fatty Acids

Omega 3 Fas PUFAs	Omega 6 Fas PUFAs	Omega 7 Fas MUFAs	Omega 9 Fas MUFAs
Linolenic	Linoleic	Palmitoleic	Oleic –
C18- (ODTA)	C18- (ODDA)	C16-(HDA)	C18(ODA)
Timnodonic			Erucic –
C20- (EPA)	Arachidonic		C22(DA)
Cervonic	C20-(ETA)		Nervonic
C22-(DHA)			C24-(TA)
Clupanodonic			
C22-(DPA)			

Examples of ω3 Fatty acids

- Linolenic (18:3;9,12,15) (ω3)
- Timnodonic/Ecosapentaenoic Acid /EPA (20:5;5,8,11,14,17)(ω3)
- Clupanodonic acid/(Docosa Pentaenoic Acid): (DPA) (C22:5;7,10,13,16,19)(ω3)
- Cervonic/Docosa Hexaenoic Acid
 (DHA)(22:6;4,7,10,13,16,19)(ω3)

Rich sources of dietary Omega and nutritional essential PUFAS are:

- –Vegetable Oils
- -Green Leaves, Algae
- —Fish and Fish oils
- -Flax Seeds

Sources, Distribution, Composition Of Fatty Acids In Human Body

Sources Of Fatty Acids To Human Body

- Exogenous Sources- Dietary Food Items
- Endogenous Biosynthesis- From Free Excess
 Glucose in Liver

Forms of Dietary Fatty Acids To Be Ingested Natural Forms Of Fatty Acids

- Fatty acids in nature mostly presently in
 - Esterified form of FAs— (TAG,PL,CE)
 - Even Numbered Carbon
 - Unsaturated- PUFAs/Omega 3 and 6
 - Cis forms

FirstRanker.com www.FirstRanker.com www.FirstRanker.com www.FirstRanker.com				
Contents Of Fatty	acids	Sources		
Highest Content of	of MUFA	Olive Oil, Mustard Oil		
Highest content o	fPUFA	Safflower, Sunflower, Flax seed Oil		
Highest content of SFA		Coconut Oil		
Oils Rich In SFAs		rich in JFAs	Oils rich in PUFAs	
Coconut Oil	Olive Oil (75%)		Flax seeds/ Linseed Oil	
Palm Oil	Sunflowe	r Oil (85%)	Soya /Safflower Oil	
Butter		d nut / nut Oil	Almond Oil	
Animal Fat Almo		nd Oil	Rice Bran	
Sesar		me Oil	Walnuts Oil	

Beef Fat (Tallow Fat) 50%

Lard (Pork Fat) 40%

www.FirstRanker.com

Corn Oil

Marine Fish

Comparison of Dietary Fats

SATURATED FAT

© 2011 Pearson Education, Inc.

POLYUNSATURATED FAT

MONOUNSATURATED FAT

1113114111	Ner 3 choice	www.Fir	stRanker.com ww	vw.FirstRanker.com
Fatty Acids	Carbons	Double bonds	Abbreviation	Source
Acetic	2	0	2:0	bacterial metabolism
Propionic	3	0	3:0	bacterial metabolism
Butyric	4	0	4:0	butterfat
Caproic	6	0	6:0	butterfat
Caprylic	8	0	8:0	coconut oil
Capric	10	0	10:0	coconut oil
Lauric	12	0	12:0	coconut oil
Myristic	14	0	14:0	palm kernel oil
Palmitic	16	0	16:0	palm oil
Palmitoleic	16	1	16:1	animal fats
Stearic	18	0	18:0	animal fats
Oleic	18	1	18:1	olive oil
Linoleic	18	2	18:2	grape seed oil
Linolenic	18	3	18:3	flaxseed (linseed) oil
Arachidonic	20	4	20:4	peanut oil, fish oil

Determination of fatty acid profile

Fatty acid		Relative content (%)
Myristic	C14:0	0.08
Palmitic	C16:0	19.12
Palmitoleic	C16:1	0.08
Margaric	C17:0	0.21
Stearic	C18:0	24.50
Oleic	C18:1	48.31
Linoleic	C18:2	5.11
Nonadecylic	C19:0	1.60
cis-Gondoic	C20:1	0.36
Behenic	C22:0	0.22
Lignoceric	C24:0	0.36
Cerotic	C26:0	0.05

Fatty acids (from highest to least as a %)

Total saturated fatty acids

Total MUFA

Total PUFA

S/U

= 46.14%

= 48.75%

5.11%

= 0.86 www.FirstRanker.com

53.86% total unsaturated fatty acids

Fatty acid Composition of Human Body

Fatty acid	Percentage
Oleic acid	50% (MUFA)
Palmitic acid	35% (SFA)
Lionleic acid	10% (PUFA)
Stearic acid	5% (SFA)

- Thus most abundant Fatty acids present in human Lipids are:
 - -Oleic acid (50%)
 - -Palmitic acid(35%)

Ideal Requirement Of Fatty Acids To Human Body

• It is ideal to consume ratio of:

•1 : 1 : 1

SFA MUFA PUFAs

 respectively from the diet to maintain good health.

- Naturally there is no single oil which has all 3 types of fatty acids in ideal proportion.
- Hence it is always advisable to mix a combination of oils and consume.

Transportation Of Fatty Acids In Human Body

Bound form /Esterified
 Forms Of Fatty acids are
 Transported through
 various Lipoproteins.

Fatty acids Transportation In body

- More than 90% of the fatty acids found in plasma are in the form of Fatty acid esters.
 - Fatty acids Esters/Esterifed form of Fatty acids exist as:
 - Triacylglycerol
 - Cholesteryl esters
 - Phospholipids

- Unesterified/Free Fatty acids (FFA)
 are very less amount in body.
- Long Chain FFA are transported in the blood circulation in association with Albumin.

Functions Of Fatty Acids

- 1. Secondary Source Of Energy
- 2. Components Of Biomembranes
- PUFA (Arachidonic Acid) Precursor for Eicosanoid Biosynthesis
- 4. Esterification of Cholesterol and its Excretion
- 5. PUFAs build and protect Brain and Heart
- 6. PUFAs prevents early ageing, prolongs Clotting

time.

- PUFAs of membrane play role in:(Less compact)
 - -Membrane fluidity
 - -Selective permeability

Functions Of PUFAS /Omega 3, and 6 FAs

- Components of cell biomembranes
- More associated to Human brain and Heart
- Involve in Growth ,development and functioning of Brain

- Omega Fatty acids Reduces risk of Heart disease:
 - Reduces Platelet aggregation by stimulating Prostaglandins and Prostacyclin's .
 - Reduces blood clotting and Thrombus formation by Lowering the production of Thromboxane.

- Omega 3 Fatty acids have pleiotropic effects (more than on effect):
 - Cardio protective effect
 - Lowers Blood pressure
 - Anti-Inflammatory
 - Anti-Atherogenic
 - Anti-Thrombotic

PUFAs Lowers Risk Of Atherosclerosis

- Since double bonds of PUFAs are unstable and easily cleavable.
- PUFAs get easily metabolized and do not get accumulated in the blood arteries and capillaries.
- Thus PUFAs have low risk of Atherosclerosis and Cardio vascular disorders.

- Fish (rich in Omega 3 Fatty acids) Eaters has Healthy Brain and Heart
- Brain development with an efficient nervous function.
- Protected from Heart attacks.

- Deficiency of Essential Fatty acids :
 - Affects every cell ,organ and system
 - Growth retardation
 - Problems with reproduction
 - -Skin lesions
 - Kidney and Liver disorders
 - -Brain disorders/Behavioral disorders.

Deficiency Of PUFAs/ Omega 3,6 Fatty acids

- Deficit of omega fatty acids affect the normal growth, development and functioning of brain.
- Persons may suffer from mental illness like:
 - Depression
 - -Attention deficit
 - Dementia=Alzheimer's Disease

- Deficiency of Omega 3 Fatty acids:
 - -Alters the cell membrane structure.
 - —Increases the risk of
 - Heart attack
 - Cancer
 - Rheumatoid Arthritis

Phrynoderma /Toad Skin is due to PUFA deficiency.

- Phrynoderma /Toad Skin Symptoms
- The skin becomes dry with lesions (Scaly Dermatitis).
- Presence of horny erruptions on the posterior and lateral parts of limbs, back and Buttock.
- Loss of hair
- Poor wound healing
- Acanthosis and Hyperkeratosis

- Deficiency of PUFAs lower:
 - Oxidative Phosphorylation-ATP generation
 - Fibrinolytic Activities

Fatty Acids At Glance

Name of Biomolecule	Fatty acids
Class	Derived Lipids
Structural Features	Organic acids ,Hydrocarbon Chain (C2-26) Terminal Mono Carboxylic Acid
Sources of FAs to body	From Exogenous and Endogenous
Distribution in Body	FAs mostly in esterified form, Associated with Simple and Compound Lipids. Distributed in all tissues.
Functional aspects	Energy, Biomembrane components
Interrelationships	Fatty acids associated to other form of Simple and Compound Lipids