

Department of Biochemistry

Learning Objectives

- 1. Biosynthesis of non-essential amino acids:
- Alanine
- Asparagine & Aspartate
- Cysteine
- Glutamate
- Glutamine
- Glycine
- Proline
- Serine
- Tyrosine
- Hydroxyproline and Hydroxylysine

Biosynthesis of non-essential amino acids

TABLE 27-1 Amino Acid Requirements of Humans

Nutritionally Essential	Nutritionally Nonessential
Arginine*	Alanine
Histidine	Asparagine
Isoleucine	Aspartate
Leucine	Cysteine
Lysine	Glutamate
Methionine	Glutamine
Phenylalanine	Glycine
Threonine	Hydroxyproline ^b
Tryptophan	Hydroxylysineb
Valine	Proline
	Serine
	Tyrosine

Table 27.1. Harper's Illustrated Biochemistry 30^{th} Edition

Glutamate

- Glutamate, is formed by amidation of α-ketoglutarate, catalyzed by mitochondrial glutamate dehydrogenase
- It require NADPH as a reducing agent
- This reaction strongly favors glutamate synthesis, which lowers the concentration of cytotoxic ammonium ion.

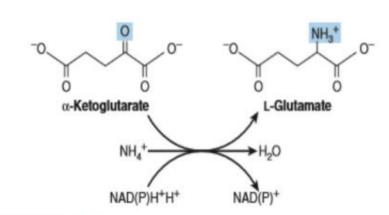


FIGURE 27-1 The reaction catalyzed by glutamate dehydrogenase (EC 1.4.1.3).

Fig 27.1. Harper's Illustrated Biochemistry 30th Edition

- NH4+ binds, and uncharged NH₃ attacks γ-glutamyl phosphate
- Release of Pi and of a proton from the γ-amino group of the tetrahedral intermediate then allows release of the product, glutamine

Glutamine

- Amidation of glutamate to glutamine catalyzed by glutamine synthetase
- Glutamine, is amino group donor in formation of many biosynthetic products, as well as being a storage form of ammonia

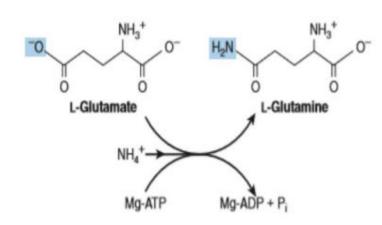


FIGURE 27-2 The reaction catalyzed by glutamine synthetase (EC 6.3.1.2). Fig 27.2. Harper's Illustrated Biochemistry 30th Edition

- Mammalian Glutamine synthetases are activated by αketoglutarate, the product of glutamate's oxidative deamination
- This prevents the accumulation of the ammonia produced by that reaction

Alanine

• Transamination of pyruvate forms alanine by aminotransferase

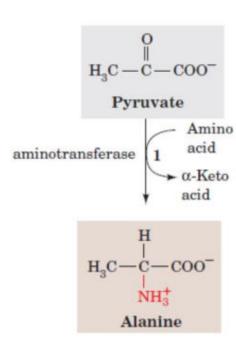


Fig.26.54. Biochemistry. 4th edition by Donald Voet and Judith G. Voet

Aspartate

Transamination of oxaloacetate forms aspartate by aminotransferase

Fig.26.54. Biochemistry. 4th edition by Donald Voet and Judith G. Voet

Asparagine

- Conversion of aspartate to asparagine, by amidation reaction and catalyzed by asparagine synthetase
- ATP is needed to activate the receptor a carboxyl group
- Asparagine is readily synthesized in most cells, but some leukemic cells lost this ability

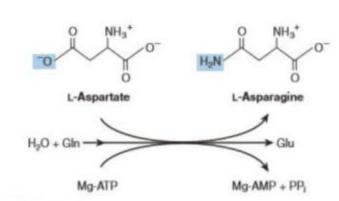


FIGURE 27–5 The reaction catalyzed by asparagine synthetase (EC 6.3.5.4). Note similarities to and differences from the glutamine synthetase reaction (Figure 27–2).

Fig 27.5. Harper's Illustrated Biochemistry 30th Edition

- Therapeutic approach for patients with asparagine synthetase deficient tumors is treatment with exogenous asparaginase to hydrolyze the bloodborne asparagine on which these cells rely
- Normal cells synthesize and degrade asparagine.

Serine

The pathway enzymes are:

- 3-phosphoglycerate dehydrogenase
- PLP-dependent aminotransferase
- Phosphoserine phosphatase.

$$COO^-$$

$$H-C-OH$$

$$CH_2-OPO_3^{2-}$$

$$3-Phosphoglycerate$$

$$1 \qquad NAD^+$$

$$NADH$$

$$COO^-$$

$$C=O$$

$$CH_2-OPO_3^{2-}$$

$$3-Phosphohydroxypyruvate$$

$$2 \qquad Glutamate$$

$$COO^-$$

$$H_3N-C-H$$

$$CH_2-OPO_3^{2-}$$

$$3-Phosphoserine$$

$$3 \qquad P_i$$

$$H$$

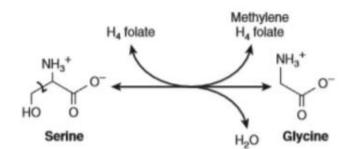
$$HO-CH_2-C-COO^-$$

$$NH_3^+$$
Serine

Fig.26.58. Biochemistry. 4th edition by Donald Voet and Judith G. Voet

Glycine

- Glycine aminotransferases can catalyze synthesis of glycine from glyoxylate and glutamate or alanine.
- Unlike most aminotransferase reactions, these strongly favor glycine synthesis
- Important mammalian routes for glycine formation are from choline


FIGURE 27–8 Formation of glycine from choline. Catalysts include choline dehydrogenase (EC 1.1.91.1), betaine dehydrogenase (EC 1.2.1.8), betaine-homocysteine N-methyltransferase, sarcosine dehydrogenase (EC 1.5.8.3), and dimethylglycine dehydrogenase (EC 1.5.99.2). Fig 27.8. Harper's Illustrated Biochemistry 30th Edition

Cont--

Serine participates in glycine synthesis in two ways:

- 1. Direct conversion of serine to glycine by serine hydroxymethyl transferase in a reaction that also yields N5,N10-methylene-THF
- 2. Condensation of the N5,N10-methylene-THF with CO2 and by the glycine cleavage system

FIGURE 27–9 Interconversion of serine and glycine, catalyzed by serine hydroxymethyltransferase (EC 2.1.2.1). The reaction is freely reversible. (H_A folate, tetrahydrofolate.)

Fig 27.9. Harper's Illustrated Biochemistry 30th Edition

Proline

- Initial reaction of proline biosynthesis converts γ-carboxyl group of glutamate to mixed acid anhydride of glutamate γphosphate
- Subsequent reduction forms glutamate γ-semialdehyde, which following spontaneous cyclization is reduced to proline

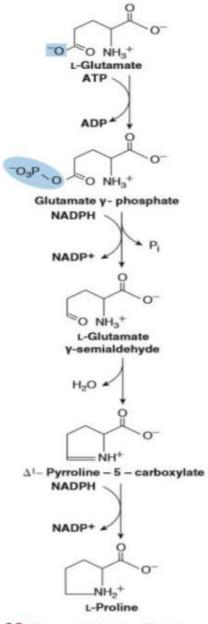


FIGURE 27-10 Biosynthesis of proline from glutamate.

Catalysts for these reactions are glutamate 5-kinase (EC 2.7.2.11), glutamate semialdehyde dehydrogenase (EC 1.2.1.41), and pyrroline 5-carboxylate reductase (EC 1.5.1.2). Ring closure of glutamate semialdehyde is spontaneous.

www.FirstRanker.com

Cysteine

- While not nutritionally essential, cysteine is formed from methionine
- Require for formation of glutathione, which is imp for transport of aa
- Homocystinuria occur due to deficiency of cystathionine β-synthase

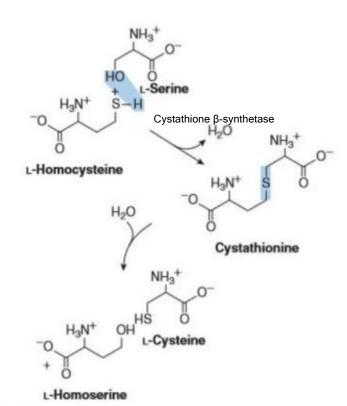


FIGURE 27–11 Conversion of homocysteine and serine to homoserine and cysteine. The sulfur of cysteine derives from methionine and the carbon skeleton from serine. The catalysts are cystathionine β-synthetase (EC 4.2.1.22) and cystathionine lyase (EC 4.4.1.1). Fig 27.11. Harper's Illustrated Biochemistry 30th Edition

Tyrosine

- Phenylalanine hydroxylase converts phenylalanine to tyrosine
- Its irreversible reaction, dietary tyrosine cannot replace phenylalanine

FIGURE 27–12 Conversion of phenylalanine to tyrosine by phenylalanine hydroxylase (EC 1.14.16.1). Two distinct enzymatic activities are involved. Activity II catalyzes reduction of dihydrobiopterin by NADPH, and activity I the reduction of O_2 to H_2O and of phenylalanine to tyrosine. This reaction is associated with several defects of phenylalanine metabolism discussed in Chapter 29.

Tetrahydrobiopterin

Fig 27.12. Harper's Illustrated Biochemistry 30^{th} Edition

Cont--

- Catalysis by this mixed-function oxidase incorporates one atom of O₂ into para position of phenylalanine and reduces other atom to water
- Reducing power, provided as tetrahydrobiopterin derives from NADPH

Branched chain aa (Valine, Leucine, & Isoleucine)

- While leucine, valine, and isoleucine are all nutritionally essential aa , tissue aminotransferases reversibly interconvert all three aa and their corresponding α -keto acids.
- These α-keto acids can replace their aa in diet.

Hydroxyproline & Hydroxylysine

- Peptidyl hydroxyproline and hydroxylysine arise from proline and lysine
- Hydroxylation of peptidyl prolyl and peptidyl lysyl residues, catalyzed by prolyl hydroxylase and lysyl hydroxylase of skin, skeletal muscle, and granulating wounds requires, in addition to the substrate, molecular O2, ascorbate, Fe2+, and αketoglutarate

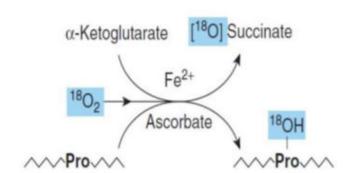


FIGURE 27–13 Hydroxylation of a proline-rich peptide.

Molecular oxygen is incorporated into both succinate and proline.

Peptidyl prolyl 4-hydroxylase (EC 1.14.11.2) thus is a mixed function oxidase. Lysyl 5-hydroxylase (EC 1.14.11.4) catalyzes an analogous reaction. Fig 27.13. Harper's Illustrated Biochemistry 30th Edition

- For every mole of proline or lysine hydroxylated, one mole of αketoglutarate is decarboxylated to succinate
- A deficiency of the vitamin C required for these two hydroxylases results in scurvy

Amino acid degradation and related disorders

Summary of Amino acid Catabolism

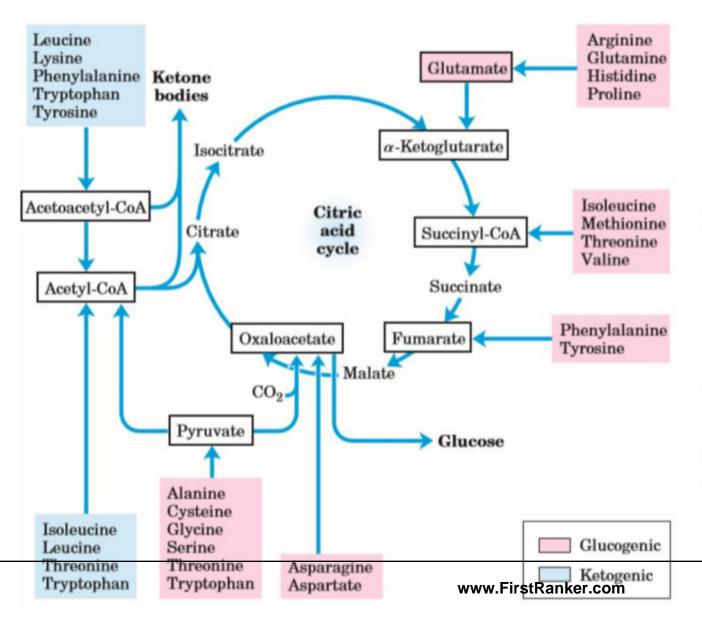


FIGURE 18-15 Summary of amino acid catabolism. Amino acids are grouped according to their major degradative end product. Some amino acids are listed more than once because different parts of their carbon skeletons are degraded to different end products. The figure shows the most important catabolic pathways in vertebrates, but there are minor variations among vertebrate species. Threonine, for instance, is degraded via at least two different pathways (see Figs 18-19, 18-27), and the importance of a given pathway can vary with the organism and its metabolic conditions. The glucogenic and ketogenic amino acids are also delineated in the figure, by color shading. Notice that five of the amino acids are both glucogenic and ketogenic. The amino acids degraded to pyruvate are also potentially ketogenic. Only two amino acids leucine and lysine, are exclusively ketogenic Fig18.15: Lehninger Principles of Biochemistry by David L Nelson

Genetic disorders related to Amino-acid catabolism

TABLE 18–2 Some Human Genetic Disorders Affecting Amino Acid Catabolism					
Medical condition	Approximate incidence (per 100,000 births)	Defective process	Defective enzyme	Symptoms and effects	
Albinism	<3	Melanin synthesis from tyrosine	Tyrosine 3- monooxygenase (tyrosinase)	Lack of pigmentation: white hair, pink skin	
Alkaptonuria	<0.4	Tyrosine degradation	Homogentisate 1,2-dioxygenase	Dark pigment in urine; late-developing arthritis	
Argininemia	< 0.5	Urea synthesis	Arginase	Mental retardation	
Argininosuccinic acidemia	<1.5	Urea synthesis	Argininosuccinase	Vomiting; convulsions	
Carbamoyl phosphate synthetase I deficiency	<0.5	Urea synthesis	Carbamoyl phosphate synthetase I	Lethargy; convulsions; early death	
Homocystinuria	<0.5	Methionine degradation	Cystathionine eta -synthase	Faulty bone develop- ment; mental retardation	
Maple syrup urine disease (branched- chain ketoaciduria)	<0.4	Isoleucine, leucine, and valine degradation	Branched-chain α-keto acid dehydrogenase complex	Vomiting; convulsions; mental retardation; early death	
Methylmalonic acidemia	<0.5	Conversion of propionyl- CoA to succinyl-CoA	Methylmalonyl-CoA mutase	Vomiting; convulsions; mental retardation; early death	
Phenylketonuria	<8	Conversion of phenyl- alanine to tyrosine	Phenylalanine hydroxylase	Neonatal vomiting; mental retardation	

Table 18.2: Lehninger Principles of Biochemistry by David L Nelson

Interaction with students

• Distributed subtopics of class to students for participate in group discussion in next class.

Reference Books

- 1) Lehninger Principles of Biochemistry
- 2) Harper's Illustrated Biochemistry-30th Ed
- 3) Biochemistry, Lippincott's Illustrated Reviews, 6th Ed
- 4) Text Book of Medical Biochemistry by Chatterjee & Rana Shinde, 8th Ed
- 5) Biochemistry, Donald Voet and Judith G. Voet, 4th Ed.

27

Thank you