Department of Biochemistry # **Learning Objectives** Catabolism of the Carbon Skeletons of amino acids and related disorders: - Catabolism of Phenylalanine and Tyrosine with genetic disorders - Arginine, Histidine, glutamate, glutamine and proline to α -ketoglutarate - Methionine, isoleucine, threonine and valine to Succinyl CoA - Degradation of branched chain aa (Leucine to Acetoacetate and Acetyl-CoA, Valine to β-Aminoisobutyrate and Succinyl-CoA and Isoleucine to Acetyl-CoA and Propionyl-CoA) - Asparagine and Aspartate to Oxaloacetate ## Conversion of amino acids to Specialized products ## Catabolism of Phenylalanine and Tyrosine with genetic disorders # Disorder related to phenylalanine catabolism ## Phenylketonuria (PKU) - Genetic defect in phenylalanine hydroxylase, first enzyme in catabolic pathway for phenylalanine, is responsible for disease phenylketonuria (PKU),most common cause of elevated levels of phenylalanine (hyperphenylalaninemia) - Excess phenylalanine is transaminated to Phenylpyruvate - The "spillover" of Phenylpyruvate (a phenylketone) into urine - High concentration of phenylalanine itself gives rise to brain dysfunction. #### Cont-- - Phenylalanine hydroxylase requires the cofactor tetrahydrobiopterin, which carries electrons from NADH to O2 and becomes oxidized to dihydrobiopterin - It is subsequently reduced by enzyme dihydrobiopterin reductase in a reaction that requires NADH - Diet low in phenylalanine can prevent the mental retardation of PKU # Disorder related to Tyrosine catabolism #### Alkaptonuria - Metabolic defect in alkaptonuria is a defective homogentisate oxidase the enzyme that catalyzes homogentisate to Maleylacetoacetate - Large amounts of homogentisate are excreted and urine darkens on exposure to air due to oxidation of excreted homogentisate - This autooxidizes to the corresponding quinone, which polymerizes to form an intensely dark color - Late in the disease, there is arthritis and connective tissue pigmentation (ochronosis) due to oxidation of homogentisate to benzoquinone acetate, which polymerizes and binds to connective tissue ## Type I Tyrosinemia - Several metabolic disorders are associated with the tyrosine catabolic pathway - Probable metabolic defect in type I tyrosinemia (tyrosinosis) is at fumarylacetoacetate hydrolase - Untreated acute and chronic tyrosinosis leads to death from liver failure, renal tubular dysfunction, rickets and polyneuropathy ## Type II Tyrosinemia - Alternate metabolites of tyrosine are also excreted in type II tyrosinemia (Richner-Hanhart syndrome), a defect in tyrosine aminotransferase produces accumulation and excretion of tyrosine and metabolites - Leads to eye and skin lesions and mental retardation ## Type III Tyrosinemia - Neonatal Tyrosinemia or type III tyrosinemia, due to lowered p-hydroxyphenylpyruvate dioxygenase/ activity of phydroxyphenylpyruvate hydroxylase - It can cause learning problems, seizures, and loss of balance - a diet low in protein, Therapy employs tyrosine phenylalanine # Catabolic pathways of five aa to α-ketoglutarate glutarate. The numbered steps in the histidine pathway are catalyzed by 1) histidine ammonia lyase, 2) urocanate hydrataWWW.FirstRanker.com zolonepropionase, and (4) glutamate formimino transferase. Fig18.26: Lehninger Principles of Biochemistry by David L Nelson ## Disorder related to Proline catabolism #### Type I hyperprolinemia - The metabolic block in type I hyperprolinemia is at proline dehydrogenase/proline oxidase - Some individuals with hyperprolinemia type I exhibit seizures, intellectual disability, or other neurological or psychiatric problems #### Type II hyperprolinemia - The metabolic block in type II hyperprolinemia is at $\Delta 1$ -pyrroline-5-carboxylate dehydrogenase, which also participates in the catabolism of arginine, ornithine, and hydroxyproline - It leads to seizures or intellectual disability. # Catabolic pathways of four aa to Succinyl-CoA ## Cont-- - Catabolism of isoleucine, methionine, and valine to propionyl-CoA - Propionyl-CoA, product of odd-chain fatty acid degradation, is converted, to succinyl-CoA by a series of reactions involving the participation of biotin and coenzyme B12 Biosynthesis of S-adenosylmethionine from methionine and ATP is catalyzed by methionine adenosyltransferase (MAT) # Disorder related to Methionine degradation # Hyper Homocysteinemia - Elevations in plasma homocysteine (Hcy) as a result of rare deficiencies in cystathionine β-synthase of the transsulfuration pathway causes homocysteine to accumulate and remethylation leads to high levels of methionine in patients - Elevated homocysteine and decreased folic acid levels in pregnant women are associated with increased incidence of neural tube defects (improper closure, as in spina bifida) in fetus #### Cont-- - The lens of eye is frequently dislocated after the age of 3, and other ocular abnormalities occur - Mental retardation is frequently the first indication of this deficiency - Attempts at treatment include restriction of methionine intake and feeding of betaine (or its precursor, choline) - In some cases significant improvement by feeding pyridoxine (vit B6) - Supplementation with folate reduces the risk of such defects Degradation of Branched chain amino acids • Mitochondrial branched-chain α-keto acid dehydrogenase complex consists of five components: E1: thiamin pyrophosphate (TPP)-dependent branched chain α -ketoacid decarboxylase E2: dihydrolipoyl transacylase (contains lipoamide) E3: dihydrolipoamide dehydrogenase (contains FAD) Protein kinase Protein phosphatase # Catabolism of Leucine to Acetoacetate and Acetyl-CoA #### Catabolism of Valine to β -Aminoisobutyrate and Succinyl-CoA #### Catabolism of Isoleucine to Acetyl-CoA and Propionyl-CoA # Disorder related to Branch chain aa degradation - Biochemical defect in maple syrup urine disease (MSUD) involves α-keto acid decarboxylase complex (thiamine pyrophosphate, FAD, NAD, lipoate and CoA) - Plasma and urinary levels of leucine, isoleucine, valine, and their α -keto acids and α -hydroxy acids (reduced α -keto acids) are elevated and accumulated in blood and spill over into the urine - This condition is called MSUD or branched-chain ketonuria suggests maple syrup, or burnt sugar. - Signs and symptoms of MSUD include fatal ketoacidosis, neurological derangements, mental retardation, and a maple syrup odor of urine - Early diagnosis by enzymatic analysis is essential to avoid brain damage and early mortality by replacing dietary protein by an aa mixture that lacks leucine, isoleucine, and valine # Catabolism of Asparagine and Aspartate to Oxaloacetate Fig18.29: Lehninger Principles of Biochemistry by David L Nelson #### Cont-- • L-asparaginase is an effective chemotherapeutic agent in the treatment of cancers that must obtain asparagine from the blood, particularly acute lymphoblastic leukemia. # Conversion of amino acids to Specialized products ## Introduction - In addition to serving as building blocks for proteins, amino acids are precursors of many nitrogen-containing compounds that have important physiologic functions - These molecules include porphyrins (involved in heme biosynthesis), hormones, purines, and pyrimidines, neurotransmitters. # Conversion of arginine, ornithine and proline to specialized products FIGURE 30-1 Arginine, ornithine, and proline metabolism. Reactions with solid arrows all occur in mammalian tissues. Putrescine and spermine synthesis occurs in both mammals and bacteria. Arginine phosphate of invertebrate muscle functions as a phosphagen analogous to creatine phosphate of mammalian muscle. Fig 30.1. Harper's Illustrated Biochemistry 30th Edition # Creatine & Creatinine - Creatinine is formed in muscle from creatine phosphate irreversible, non-enzymatic dehydration, loss of and phosphate - Glycine, arginine, and methionine participate creatine all in biosynthesis www.FirstRanker.com ## Cont-- - Creatine converted into creatine phosphate by creatine kinase using ATP as a phosphate donor - Presence of creatine kinase in the plasma is indicative of heart damage and is used in the diagnosis of myocardial infarction # Conversion of cysteine to Taurine - Three enzyme catalyzed reactions convert cysteine to taurine - Taurine displace the coenzyme A moiety of cholyl-CoA to form the bile acid taurocholic acid # Biosynthesis of hippurate from glycine - Many metabolites and pharmaceuticals are excreted as water soluble glycine conjugates - Ex. include glycocholic acid and hippuric acid formed from the food additive benzoate - Many drugs, drug metabolites, and other compounds with carboxyl groups are conjugated with glycine, which makes them more water-soluble and thereby facilitates their excretion in urine Fig 30.5. Harper's Illustrated Biochemistry 30th Edition ## **Derivatives of Histidine** - Decarboxylation of histidine to histamine is catalyzed by the pyridoxal 5'-phosphate-dependent enzyme histidine decarboxylase - Histamine functions in allergic reactions and gastric secretion FIGURE 30-6 The reaction catalyzed by histidine decarboxylase. # **Derivatives of Methionine** - These polyamines function in cell proliferation and growth, are growth factors for cultured mammalian cells, and stabilize intact cells, subcellular organelles, and membranes - They bear multiple positive charges, polyamines readily associate with DNA and RNA Fig 30.9. Harper's Illustrated Biochemistry 30th Edition FIGURE 30–9 Intermediates and enzymes that participate in the biosynthesis of spermidine and spermine. # **Derivatives of Tryptophan** - Hydroxylation of tryptophan to 5-hydroxytryptophan by liver tryptophan hydroxylase subsequent decarboxylation forms serotonin a potent vasoconstrictor and stimulator of smooth muscle contraction. - Catabolism of serotonin is initiated by deamination to 5hydroxyindole-3-acetate, a reaction catalyzed by monoamine oxidase # Cont-- - N-Acetylation of serotonin, followed by its O-methylation in the pineal body, forms melatonin - Kidney tissue, liver tissue, and fecal bacteria all convert tryptophan to tryptamine, then to indole 3-acetate - The principal normal urinary catabolites of tryptophan are 5-hydroxyindoleacetate and indole 3-acetate. # **Derivatives of Tyrosine** - Neural cells convert tyrosine to epinephrine and norepinephrine - Dopa is also an intermediate in the formation of melanin, different enzymes hydroxylate tyrosine in melanocytes - Dopa decarboxylase, a PLP-dependent enzyme, forms dopamine. #### Cont-- - \bullet Subsequent hydroxylation, catalyzed by dopamine β -oxidase forms norepinephrine - In adrenal medulla, phenylethanolamine-Nmethyltransferaseutilizes S-adenosylmethionine to methylate the primary amine of norepinephrine, forming epinephrine - Tyrosine is also a precursor of triiodothyronine and thyroxine ## Derivatives of Tyrosine: Epinephrine ## Derivatives of Tyrosine: Melanin Derivatives of Tyrosine: T3 and T4 # Disorder related to Tyrosine derivative #### **Albinism** - A deficiency of tyrosinase in melanocytes causes one form of albinism; it is inherited as an autosomal recessive disorder - Pigmentation of the skin, hair and iris is reduced and the eyes may appear pink - Reduced pigmentation of the iris causes photosensitivity, and decreased skin pigmentation is associated with an increased incidence of certain skin cancers - The tyrosinase involved in catecholamine synthesis is a different isoenzyme, controlled by a different gene; consequently, adrenaline (epinephrine) metabolism is normal # Metabolism of γ-AminoButyrate (GABA) FIGURE 30–14 Metabolism of γ-aminobutyrate. (α-AA, α-amino acids; α-KA, α-keto acids; PLP, pyridoxal phosphate.) Fig 30.14. Harper's Illustrated Biochemistry 30th Edition ## Disorder related to GABA ## 4-hydroxybutyric aciduria - Defects in succinic semialdehyde dehydrogenase, are responsible for 4-hydroxybutyric aciduria a rare metabolic disorder of γ-aminobutyrate catabolism - Characterized by the presence of 4-hydroxybutyrate in urine, plasma and cerebrospinal fluid - No present treatment is available for the accompanying mild to severe neurologic symptoms. # **Group Discussion** - Subtopics of previous and today's class discussed in groups. - Next integrated class on Protein metabolism by me and from department of Pediatrics (discussed inborn error of metabolism case studies). # Thank you