

Can Any One Guess Todays Topic Of Discussion?

Biochemistry Of Starvation

What Is Starvation?

 Starvation is complete stoppage of eating food by a human body.

What Is Total Starvation?

 Total starvation is complete stoppage of Food and Water.

Conditions Developing Starvation

Food Scarcity

(Natural Calamities, Draughts Floods and, Famines)

- Extreme Poverty
- Lost in Sea routes for long durations
- Clinical Conditions: Major Surgeries, Severe Burns.
- Desire to loose rapid weight
- Political Issues: Hunger Strikes

Features Of Starved Body

- No entry of exogenous food constituents
- Body in starvation is deprived of:
 - Calories (Carbs and Lipids)
 - Building blocks (Proteins)
 - Growth Factors (Vitamins and Minerals)
 - Protectors (Antioxidants)

www.FirstRanker.com

During Starvation the body is under Metabolic Stress

- During Starvation the body is in an emergency condition
- Starved body has to get adapted
- And Manage with

Endogeneww.FirstRanker.com/eserve

Survival Period During Starvation

- Survival period during Starvation depends upon the:
- Reserve Fat stores in Adiposecytes.
 - -More content of TAG in Adiposecytes
 - –More is the duration of survival in Starvation and vice a versa.

Length Of Survival In Starvation

- Due to deprivation of only Food:
 - -3 to 4 Weeks
 - -Longer up to 65 days
- Deprivation of water alone then survival is only for few days
 - -Less than a week

Effects Of Starvation OR

Human Body Adaptation In Starvation

Biochemical Alterations In

During Starvation

- No exogenous Food source ingested
- Food Nutrients get deprived
- Body is in an emergency condition
- Metabolic stress is developed
- Body manages and adapts to live on the endogenous fuel stores.
- Alterations in metabolic/biochemical processes
 - The biochemical alterations during Starvation are influenced by hormonal actions.
 - Glucagon and Epinephrine in starvation act upon the target organs
 - Stimulate metabolic pathways which supply fuels and
 - Improve survival phase during Starvation.

Different Modes To Study Biochemical Adaptations During Starvation Phases

Study Of Biochemistry Of Starvation With Respect To

- Stages
- Metabolism
- Organs

Occurrence Of Four Stages During Starvation OR Metabolic Alterations During Starvation

Stages	Metabolic Process
First Stage	Increased Glycogenolysis
Second Stage	Increased Gluconeogenesis
Third Stage	Increased Lipolysis/Fatty acid Beta Oxidation
Fourth Stage	Increased Ketogenesis
	www.FirstRanker.com

Alternative Adaptations In Different Metabolic Processes During Starvation

Hormonal Alterations In Starvation

- Insulin secretion decreased
- Glucagon and Epinephrine increased

Hormonal Influences In Starvation

<u>Hormone</u>	Source	<u>Change in</u> <u>Secretion</u>
Norepinephrine	Sympathetic Nervous System	$\downarrow\downarrow\downarrow\downarrow$
Norepinephrine	Adrenal Gland	↑
Epinephrine Thyroid	Adrenal Gland Thyroid Gland	↑ ↓↓↓
Hormone T4	(changes to T3 peripherally)	

- When food is in Short supply
- Metabolic activity decreases to spare fuel.
- Conservation of energy is one of the basic adaptive responses to calorie reduction

- The Hormones influences the utilization of endogenous reserve stores and
- Supply fuels to body organs during starvation phase.

- Norepinephrine and T3 participate to
- Decrease in metabolic activity when calorie intake decreases.

Biochemical Adaptations Of Carbohydrate Metabolism During Starvation Phase

Carbohydrate Metabolism In Liver During Starvation Phase

- Glycogenolysis Increased
- Glycogenesis Decreased
- Gluconeogenesis Increased
- Glycolysis Decreased
- TCA operation Decreased
- HMP Shunt Decreased
- Blood Glucose level Decreases (later stages)
- Cellular Glucose Deprivation (In Muscle Cells)

PDH a Multi Enzyme Complex is inhibited during Starvation.

Biochemical Alterations of Lipid Metabolism In Starvation

Lipid Metabolism During Starvation

- Lipolysis is Increased
- Mobilization of Free Fatty acids increased
- Beta oxidation of Fatty acids increased
- Incomplete Fatty acid Oxidation increased
- Ketogenesis Increased
- Ketolysis Decreased
- Ketosis Noted (Ketoacidosis)-Rotheras Test +ve
- Lipogenesis is Decreased

 Enzyme Acetyl Carboxylase is inhibited during
 Starvation.

Increased Ketogenesis In Starvation

What Happens? When Ketone body production Exceeds than the Ketone body Utilization?

– When?

- Cellular Glucose deprivations occurs in
 - Uncontrolled Diabetes
 - Prolonged Starvation
- Ketosis
 - High levels of Ketone Bodies in blood and urine
- Ketoacidosis
 - Severe ketosis
 - Lowered blood pH,
 - Nausea ,Acetone breath
 - Coma, Death

Cure For Ketosis

 Ketosis Cured by infusion of Glucose.

Alterations In Protein Metabolism During Starvation

During Starvation

- Catabolism Of Muscle Proteins increased
- Transdeamination reaction of Amino acids is increased
- To release Glucogenic amino acids
- Ammonia Detoxification and Urea production increased initially and decreased as Starvation phase prolongs.
- Body is in negative Nitrogen Balance.
- Concentration of Functional

Proteins Decreases.

www.FirstRanker.com

Glucose Nitrogen Ratio Increased In Starvation

The Control of Control

www.FirstRanker.com

HY PORHYROIDISM.

During Starvation Alterations Occur In Water and Electrolyte And Acid Base Balance

- Reduction in Body Water
- Reduction of Potassium ions
- Acidic blood pH due to increased Ketone bodies

On prolonged phase of Starvation there results

 Severe dehydration and Acid Base imbalance

Alterations In BMR

 BMR is first affected in starvation.

 In starvation BMR is Decreased.

Biochemical Adaptations By Organs During Starvation

Differentiation In Well Fed And Fasting States Of Human Body

Firstranker's choic	www.FirstRanker.com	www.FirstRanker.com www.FirstRanker.com		
	WELL-FED STATE	FASTING STATE		
Hormones	1 Insulin	† Glucagon, Adrenaline, Cortisol		
Response of the body	Hyperglycemia † Glycogenesis † Lipogenesis † Protein synthesis	Hypoglycemia † Lipolysis † Ketogenesis † Proteolysis		
	WELL-FED STATE	FASTING STATE		
Source of Glucose	from food	from stores (Glycogen) Gluconeogenesis		
Fate of Glucose	Glycolysis formation of Glycogen and TAG stores www.FirstRanker.com	Glycolysis		

		www.riistNaiikei.com	
	WELL-FED STATE	FASTING STATE	
Source of Fatty acids	from food TAG	from storage TAG	
Fate of Fatty acids	β-oxidation synthesis of TAG and Store as Depot Fat	↑ β-oxidation (Incomplete one) Ketogenesis	
	WELL-FED STATE	FASTING STATE	
Source of Amino acids	from food	From muscle Proteins	
Fate of Amino acids	Protein synthesis www.FirstRanker.com	Glucogenic amino acids Produce Glucose via Gluconeogenesis	
1			

www.FirstRanker.com

Preferred fuels By Human body In the Well-Fed and Fasting States

Organs	Well-Fed	Fasting	
Liver	Glucose & Fatty acids	Fatty acids	
Resting skeletal Muscle	Glucose &	Fatty acids & KB	
	Fatty acids		
Cardiac muscle	Fatty acids	FA,AA & KB	
Adipose tissue	Glucose	Fatty acids	
Brain	Glucose	Glucose ,Later KB	
RBCs	Glucose	Glucose	

BIOCHEMICAL PROFILE OF EARLY FASTING STATE

- Blood Glucose levels decreases
 - 65 mg/dl
- Active Glycogenolysis
 - Muscle and Liver
- Shift of metabolic fuel from Glucose to fatty acids
 - Fatty acid mobilization from adipose tissues
- Gluconeogenesis
 - Glucose Alanine cycle

BIOCHEMICAL PROFILE OF STARVED STATE

- GLUCOSE levels more decreased
 - 40 mg/dL
- PROTEIN CATABOLISM increased
 - Sequesters Nitrogen as urea
 - Excretes 20 to 30 grams daily
- Gluconeogenesis taking place using precursors as
 - Amino acids
 - Lactate
 - Glycerol
 - KETONE BODIES increased
 - Acetyl CoA converted to ketone bodies via Ketogenesis

In Prolonged Starvation

- After 3 days of Starvation -> Liver forms large amounts of Ketone bodies
 - (Due to shortage of Oxaloacetate)
- Ketone Bodies -> released into blood
- Brain and Heart start to use ketone bodies as fuel during phase of

Starvation.

Starvation Of Several Weeks

- After several weeks of starvation ->
 Ketone bodies become major fuel of
 Brain
- After depletion of TAG stores
- Proteins degradation accelerates
- Death due to loss of Heart, Liver, and Kidney function.

FUEL CHOICE DURING STARVATION

Changes Of Liver Glycogen Content

During Starvation

 Fuel changes from Glucose to Fatty acids to Ketone bodies

Metabolic Response To Fasting

LEGEND	I	П	III	IV	V
FUEL FOR BRAIN	GLUCOSE	GLUCOSE	GLUCOSE	GLUCOSE, KETONES	GLUCOSE, KETONES

Ruderman NB. Annu Rev Med 1975;26:248

Fasting - Early Stage

Fasting – Late Stage

Energy Expenditure in Starvation

Consequences Of Starvation

- Severe Malnutrition
- Damages and affects vitality of Important Internal Organs
- Decreased BMR
- Night blindness (Vitamin A deficiency)
- Scurvy (Vitamin C deficiency)
- Irregular Menses
- Constipation
- Low Immunity
- Bone Loss
- Anaemia (Iron and Protein deficiency)
- Fatigue
- Dehydration
- Water Electrolyte Imbalance
- High Blood Pressure
- Brain Defects
- Death

Questions

 Explain the different stages of starvation & biochemical alterations in the body during these stages.

OR

 Biochemical alterations/adaptations during starvation.

- Describe the role of following organs during various stages of starvation
- Liver
- Brain
- Muscles
- Adipose tissues

THANK YOU

mm.FirstPanker.com