

Introduction To Metabolism

What is Metabolism?

- Metabolism is a network of metabolic /biochemical reactions.
- Carried out in living cells.
- In a well organized, integrated and regulated manner.
- Related to various biomolecules viz
 - Carbohydrates
 - Lipids
 - Proteins
 - Nucleoproteins

- Metabolism involves
 interconversions of chemical
 compounds in the body.
- Metabolite precursors are transformed to end products via many specific intermediates.

- Metabolism is the sum of the chemical changes that convert:
 - Nutrients into energy.
 - Chemically complex substances of cells into simpler forms.
 - Chemically simple substances into functional complex biomolecules.

The Sun is Energy for Life

- Phototrophs (Plants) use light to drive synthesis of organic molecules.
- Heterotrophs (Animals) use these as building blocks.
- CO2,O2 and H2O are recycled.

Copyright © 2005 Pearson Education, Inc., publishing as Benjamin Cummings

Importance Of Metabolism

 Normal Metabolism is vital for health, growth, reproduction and good survival of human beings.

Role of Enzymes and Hormones in Metabolism

- •Enzymes along with Coenzymes biocatalyze specific metabolic reactions.
- •Thus Enzymes are "Functional units of Metabolism"

 Hormones are chemical messengers of human body. They are regulators of Enzyme activity.
 (Hormones Stimulate/Inhibit Enzyme activity)

 Enzyme reactions are organized into discrete pathways.

Metabolite

 Metabolite is a substrate or a reactant undergoing a biochemical/metabolic reaction.

Metabolic Reaction

 Metabolic reaction is a biochemical reaction where a metabolite is specifically reacted by an Enzyme and Coenzyme to give a product.

Types Of Metabolic Reactions

- Reversible Reactions Same Enzyme is required.
- Not regulatory steps.

- Irreversible Reactions-
 - Different set of Enzyme required.
 - Non equilibrium Reactions.
 - Regulatory steps.

$$\begin{array}{c}
E2 \\
C \\
E3
\end{array}$$

Types Of Biochemical Reactions

- Oxidation/Dehydrogenation/Hy droxylation
- Reduction
- Hydrolytic
- Carboxylation
- Decarboxylation

- Phosphorylation
- Dephosphorylation
- Amination
- Deamination
- Isomerization
- Hydration
- Dehydration

Metabolic Pathway

 Metabolic pathway is a series of well defined and significant biochemical reactions followed one after another giving intermediate products and finally end product of the pathway.

Organization of Pathways

- Pathways consist of sequential steps.
- The enzymes may be separate.
- May form a multienzyme complex.
- May be a membrane-bound system.
- New research indicates that multienzyme complexes are more common than once thought.

Separate enzymes

Froduct

Fro

Organization of Pathways

Closed Loop (intermediates recycled)

Linear
(product of rxns are
substrates for
subsequent rxns)

Spiral (same set of enzymes used repeatedly)

Bound System

Compartmentalization Of Metabolic Pathways

 Compartmentalization of pathways permits integration and regulation of metabolism.

Phosphoryl-group Transfer

Types Of Metabolic Pathway

- Catabolic/Degradative / Energy Generating/ATP producing Pathways/Exothermic.
- Anabolic/Synthetic/Energy Utilizing/ ATP Using Pathways/Endothermic.

- Catabolic pathways involve oxidative reactions producing reducing equivalents- NADH+H⁺ and FADH2.
- Catabolic pathways converge to few end products.

 Anabolic pathways diverge to synthesize many biomolecules.

Saunders College Publishing

Figure 18.4

Glucose + 6O₂

•Some pathways serve both in catabolism and anabolism, those are Amphibolic pathways.

- Amphibolic Pathways occur at the crossroads of metabolism.
- Amphibolic pathways links between Anabolic and Catabolic pathways.

Regulation of Metabolic Pathways

- Regulation means stimulation and inhibition of pathways as per cellular need.
- Hormones regulate the metabolic pathways.
- Metabolic pathways are regulated to allow the organism to respond to changing conditions.

- Every metabolic pathway has its specific regulatory enzymes/key enzymes.
- Hormones regulate by either stimulating /inhibiting the regulatory/key enzymes of the pathway.

Modes Of Metabolic Regulation

- Allosteric regulation
- Covalent modification
- Control of enzyme levels
- Compartmentalization
- Metabolic specialization of organs

 Feedback inhibition — product of pathway down regulates activity of early step in pathway

Feedforward activation –
metabolite produced early in
pathway activates down stream
enzyme

$$A \xrightarrow{E_1} B \xrightarrow{E_2} C \xrightarrow{E_3} D \xrightarrow{E_4} E \xrightarrow{E_5} P$$

$$\downarrow \qquad \qquad \downarrow \qquad$$

Regulating Related Catabolic

- Anabolic & catabolic pathways In Wolving the same compounds are not the same.
- Some steps may be common to both
- Others must be different to ensure that each pathway is spontaneous.
- This also allows regulation mechanisms to turn one pathway onn and the other off.

Modes Of Enzymes Regulation

- Alteration in membrane permeability.
- Conversion of Inactive to Active form.
- Stimulation of mRNA translation.
- Induction of new mRNA formation.
- Repression of mRNA formation.

- Knowledge of normal metabolism is essential for:
- Understanding adaptations of
 - > Starvation
 - > Exercise
 - > Pregnancy and lactation.
- Understanding of metabolic disorders.

Abnormal Metabolism Is Due To

- Nutritional Deficiencies
- Enzyme Defects
- Hormonal Defects
- Drug and Toxin Interactions

- Normal Enzyme and Hormonal activities gives normal metabolism and health to human body.
- Defect in Enzymes and Hormones derange the normal metabolism.

Derangement in Metabolism

- Any defect or derangement in normal pattern of metabolism leads to metabolic disorders.
- Mutation in Genes of Enzymes, forms defective Enzymes.
- Congenital defect of Enzyme leads to Inborn Error Of Metabolism.

Inborn Error Of Metabolism

 Congenital deficiency of any single Enzyme of a metabolic pathway leads to Inborn Errors of Metabolism.

Enzyme Deficiency of a Metabolic Pathway • Blocks the metabolic reaction.

- Blocks the metabolic pathway.
- Accumulates and excrete intermediate product of the pathway.
- No formation of end product of the pathway.
- Affects other interrelated metabolic pathways.

Methods Used to Study Metabolism

- Metabolic Reactions/Metabolic Pathways were studied :
 - Using whole organism/Cellular fractions
 - Using Metabolic Probes.
 - Using Radioisotopes.

MANN FIRSTRANKER COM