

INDUCTION OF TOPIC

Chief Constituents Of Food OR Enumerate Macro Nutrients

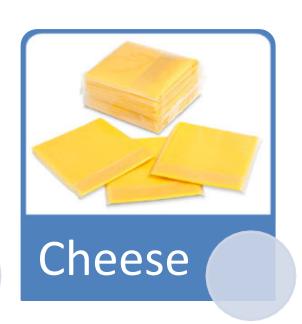
Essential Food Nutrients

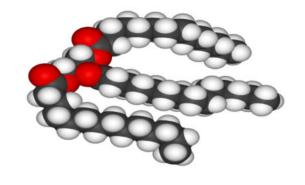
Body Constituents And Functional Biomolecules

Identify A Food Nutrient

Richly Associated

To Following Food Items



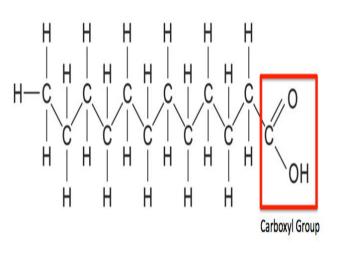

Any Guesses Of Todays Topic???

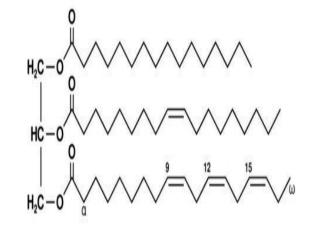
LIPIDS CHEMISTRY AND FUNCTIONS

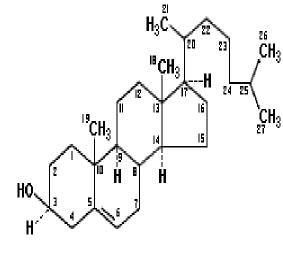
SYNOPSIS/CONTENTS

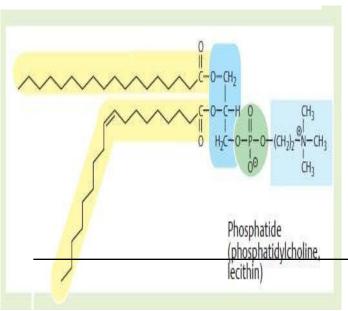
- WHAT ARE LIPIDS?
- DEFINITION OF LIPIDS
- CLASSIFICATION OF LIPIDS
- STUDY Of BIOMEDICALLY IMPORTANT LIPIDS wrt:
 - -STRUCTURE
 - DISTRIBUTION
 - **-FUNCTIONS**
 - PROPERTIES
 - RELATED DISORDERS

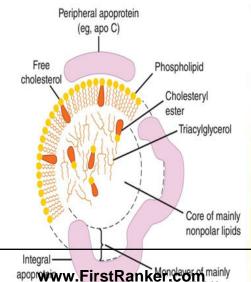
INTRODUCTION

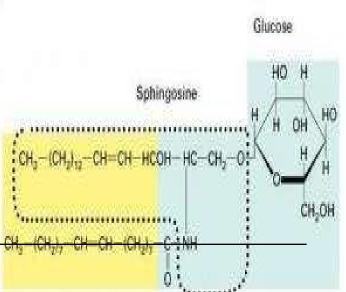

WHAT ARE LIPIDS?




Pattern To Study Biomolecules


- Name of Biomolecule
- Class and Subclass
- Structural Features
- Sources
- Distribution in Body
- Functional aspects
- Interrelationships
- Derangements and Associated Disorders

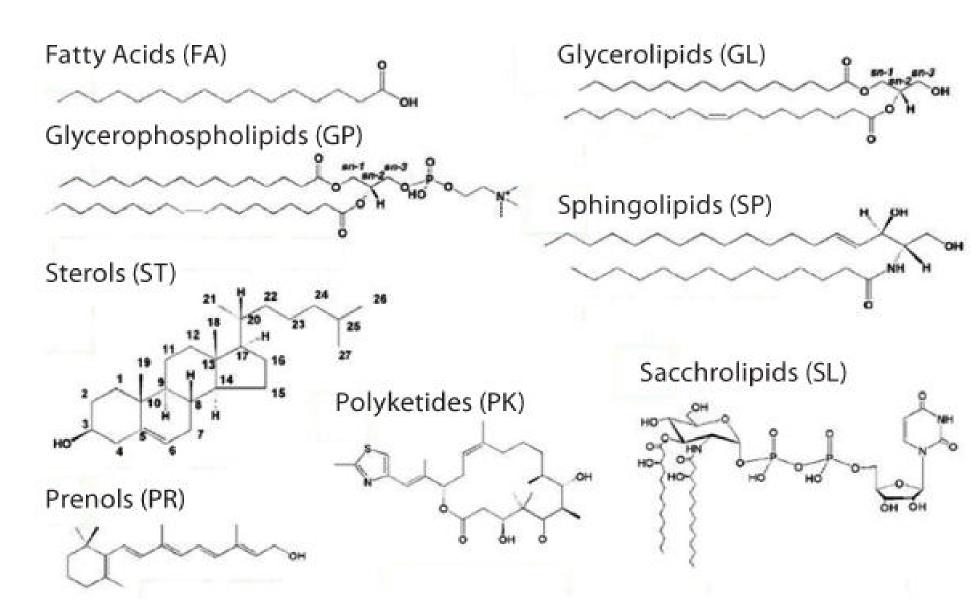

Look At Structural Forms Of Lipids Depicts Its Features



Lipids are :

- Organic Biomolecules
- Occurs in Plants and Animals
- Food Constituents/Nutrients
- Chemically Esters has Ester Bonds(-COO)
- Heterogeneous
- Hydrophobic
- Secondary Source of Energy
- Structural Components of Biomembranes
- Signaling and Nerve Impulse Transduction

Names Of Various Lipids Associated To Human Body


Biomedically Important Lipids

- 1. Fatty Acids (FAs)
- 2. Triacylglycerol (TAG)
- 3. Phospholipids (PL)
- 4. Lipoproteins (LP)
- 5. Glycolipids
- 6. Cholesterol (Free)
- 7. Cholesterol-Ester (Esterified)

Important Features Of Lipids

Heterogeneous Nature Of Lipids

Heterogeneity Of Lipids

Alter Lipids

P
Structure

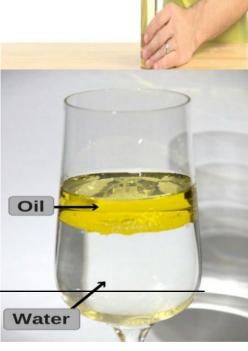
D
S
Functions

Solubility Of Lipids

Solubility Of Lipids

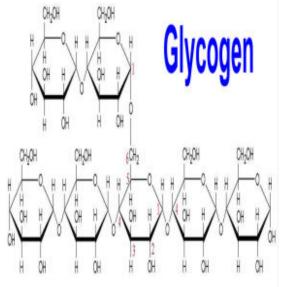
Lipids are relatively Insoluble in Water/Polar Solvent

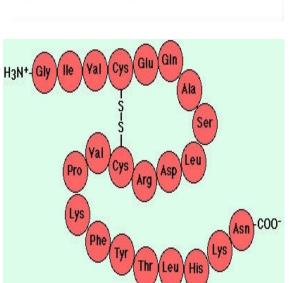
Since they have Uncharged/ Non polar and Hydrophobic groups in their structures

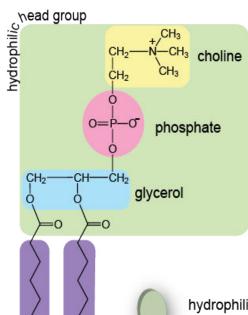

Lipids are soluble in Fat Solvents

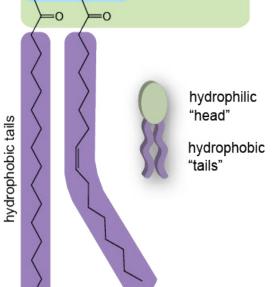
- -Lipids are readily soluble in
- –Non polar Organic solvents /Fat Solvents
 - -Acetone
 - -Alcohol (Hot)
 - -Benzene
 - -Chloroform
 - -Ether

Size And Density Of Lipids


- Lipids are biomolecules relatively :
 - –Smaller in size
 - -Less dense
 - -(Buoyancy-Float in Water)



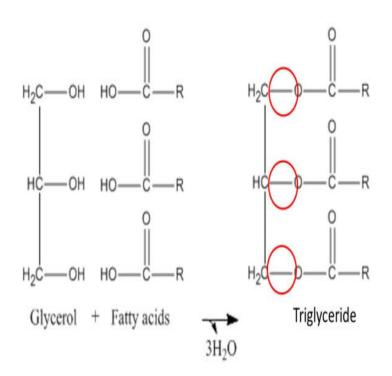




Complex Lipid structures are not Bio-Polymers

 Unlike Complex Carbohydrates and Proteins

Lipid structure
contains no
repeatedly linked
Monomeric units


Chemical Nature Of Lipids

Chemically Lipids are Esters

 Most Lipids are Esters of Fatty acids(-COOH) with Alcohol (-OH)

Ester Bonds

 Lipids are relatively or potentially associated with Fatty acids.

DEFINITION OF LIPIDS

Bloor's Definition Of Lipids

- Lipids are Organic, Heterogeneous Hydrophobic
 Biomolecules
- Relatively insoluble in water and soluble in organic solvents.
- Chemically Esters of Fatty acids with Alcohol.
- Utilized by body to produce energy (ATP)

Sources Of Lipids To Human Body

- Exogenous Sources
 - Ingestion Dietary
- **Healthy High-Fat Foods**
- Avocados

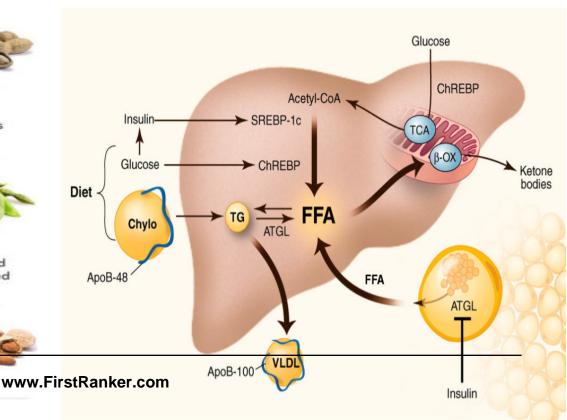
 Peanut Butter

 Olives & Olive Oil

 Sunflower Seeds

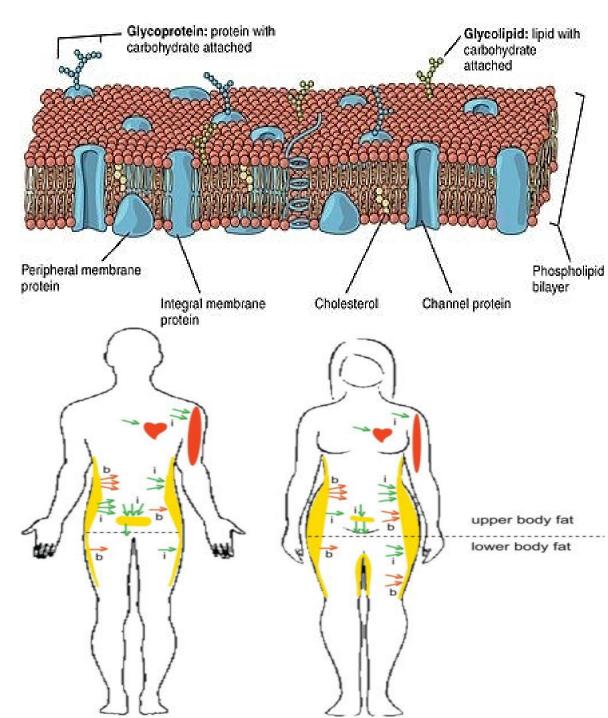
 Coconut Oil

 Coconut Oil


 Almonds

 Peanut & Peanut & Peanut & Peanut Butter

 Walnuts


 Walnuts

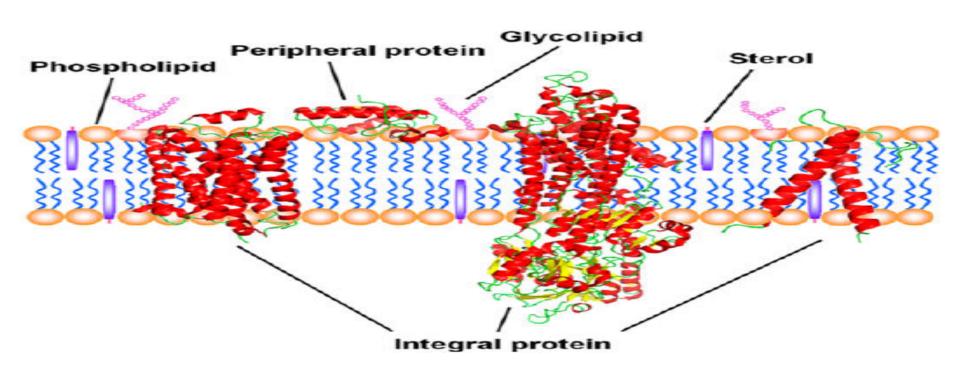
 Ground Flaxseed
- Endogenous Sources
 - Biosynthesis In Liver
 - Intestine

Occurrence / Distribution Of Lipids In Human Body

- Bio Membranes
- Depot Fat
- Nervous System –Brain
- Subcutaneous Layer of Skin
- Padding of Internal Soft Organs

Biological Functions Of Lipids

Calorific, Membrane Structural, Signaling


S.No	Lipid Form	Biochemical Role
1	Triacylglycerol	Predominant Lipid form of Diet Calorific Value Reservoir of Energy for long term Insulator and Mechanical Shock absorber
2	Fatty acids	FAs Stored as TAG Oxidize to generate ATP Components of Phospholipids & Glycolipids
3	Phospholipids	Components of Biomembranes Lung Surfactant Clotting Mechanism
S.No	Lipid Form	Biochemical Role
S.No	Lipid Form Glycolipids	Biochemical Role Components of Biomembranes Neurons, Myelin Sheaths
		Components of Biomembranes
4	Glycolipids	Components of Biomembranes Neurons, Myelin Sheaths Components of Biomembranes Nerve Impulse conduction

Lipids of dietary and Calorific value

- -Triacylglycerol
- -Fatty acids

Structural Role Of Lipids Lipids Associated To Biomembranes

- 1. Phospholipid bilayer
- 2. Glycosphingolipids
- 3. Cholesterol

Lipids Superior Than Carbohydrates

Lipids are Superior Than Carbohydrates

- Lipids have Higher Calorific value (9Kcal/gm)
- High storage content , can be stored in unlimited amount.
- They provide energy source for longer duration.

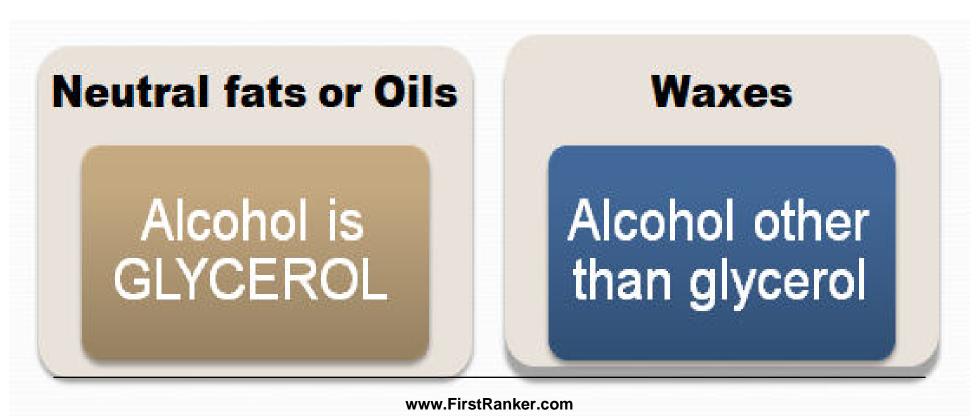
(During Marathon Races)

 Thus Lipids serve as major reservoir of energy for long term use in human beings.

Classification Of Lipids

With Examples of Biomedically Important Lipids

Lipids are Classified Into Three Main Classes


- Three Main Classes of Lipids are:
 - i. Simple Lipids
 - ii. Compound/Complex Lipids
 - iii. Derived Lipids

1. Simple Lipids/Neutral Lipids

- Chemically Simple Lipids are:
- Esters of Fatty acids with an Alcohol

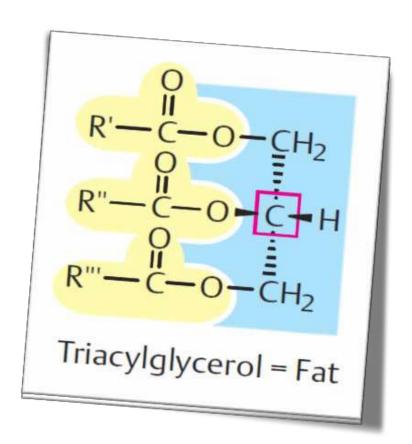
Sub Classes Of Simple Lipids Based On Alcohol

- Depending upon the type of Alcohol:
- Simple Lipids are of two sub types:
 - Fats/Oils Triacylglycerol

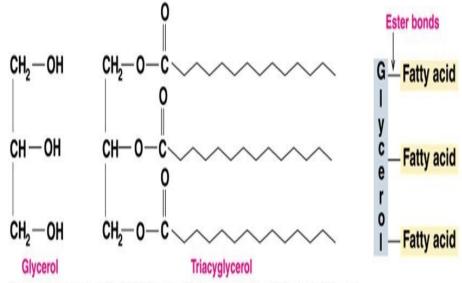
(Alcohol is Glycerol)

Waxes

(Alcohol- Cholesterol/ Retinol)


Chemical name of Fat /Oil IS Triacylglycerol (TAG)

TAG- Simple Lipid / Neutral Lipid / FATS or OILS



- Fats/Oils/TAG
- Esters of Fatty acids with Glycerol (Trihydric Alcohol)
- Three Fatty acids linked to a Glycerol by ester bonds.

In a triacylglycerol, glycerol forms ester bonds with three fatty acids.

Timberlake, General, Organic, and Biological Chemistry. Copyright © Pearson Education Inc., publishing as Benjamin Cummings

Waxes:

- Waxes are Simple Lipids
- Waxes are chemically Esters of Fatty acids with higher complex, monohydric, Alcohols, other than Glycerol.

Examples Of Human Body Waxes:

Cholesterol Ester(Cholesteryl Palmitate)

Retinol Ester

(Retinyl Palmitate)

www.FirstRanker.com

Compound/Complex Lipids

Compound Lipids is a class of Lipids

Chemically composed of Fatty acids
 Alcohol and an Additional group.

Depending upon the Type of Additional group

Types of Compound Lipids are:

Three Main Compound Lipids

- 1. Phospholipids
- 2. Glycolipids
- 3. Lipoproteins

S. No	Type of Compound Lipids	Additional group Present
1	Phospholipids	Phosphoric acid and Nitrogen Base
2	Glycolipids	Carbohydrate moieties
3	Lipoproteins	Apoproteins 7.FirstRanker.com

Types Of Phospholipids Based On Alcohol

»Glycerophospholipds (Contains –Glycerol)

»Sphingophospholipids (Contains –Sphingol)

Types Of Glycolipids/Glycosphingolipids

- » Cerebrosides
- **»**Gangliosides
- »Globosides
- »Sulfatides
- All Has Alcohol Sphingol/Sphingosine

Lipoproteins Aggregation of Lipids and Apoproteins

- Chylomicrons
- Very Low Density Lipoprotein (VLDL)
- Low Density Lipoprotein (LDL)
- High Density Lipoprotein (HDL)

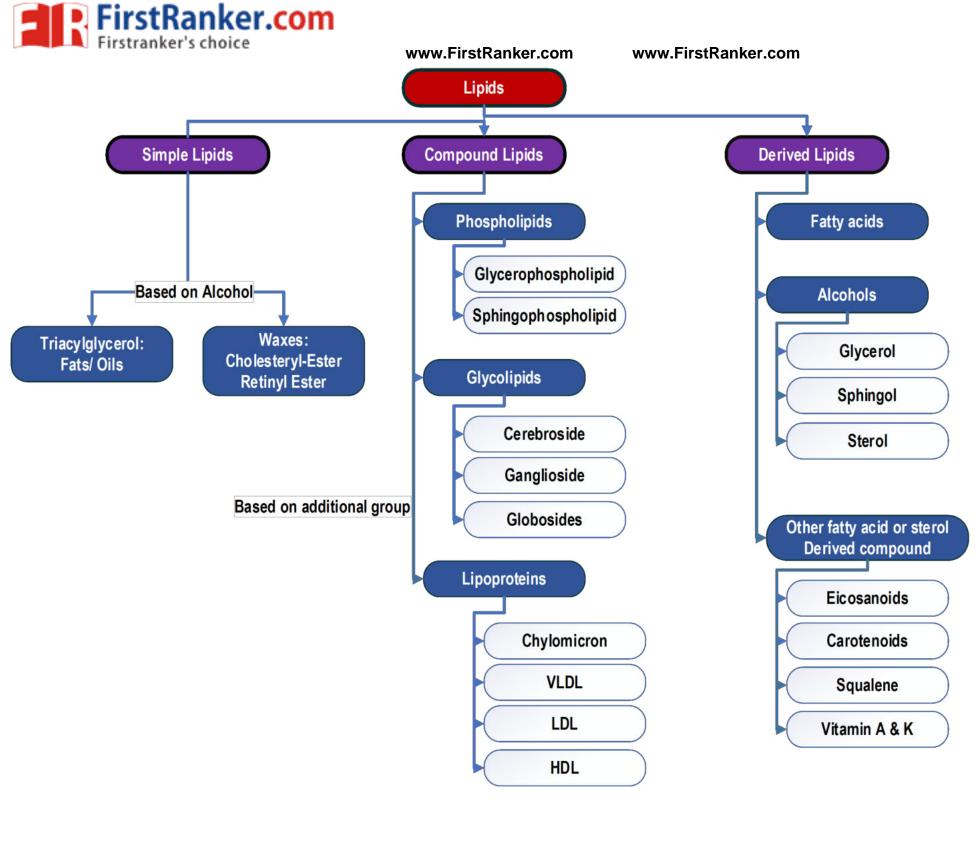
Derived Lipids

 Derived Lipids are Hydrolytic products of Simple or Compound Lipids OR their derivatives.

OR

 Hydrolytic products released from Simple and Compound Lipids, who has potency to form them.

Examples of Derived Lipids:


Hydrolytic Products of Simple and Compound Lipids

- Fatty Acids
- **Alcohols:**
 - -Glycerol
 - -Sphingol
 - -Cholesterol

Other Examples Of Derived Lipids

- Lipid like compounds
- Derived from Fatty acids and Sterol/Cholesterol:
 - Eicosanoids (Prostaglandins , Leukotrienes , Thromboxanes)
 - Steroidal Hormones: Derived from Cholesterol
 - Fat Soluble Vitamins (A,D,E and K)
 - Ketone Bodies (Partial Oxidized Products of Fatty

acids)

Bloor's Classification Of Lipids

- Four Classes of Lipids By Bloor
- A. Simple Lipids
- B. Complex/Compound Lipids
- C. Derived Lipids
- D. Miscellaneous Lipids

D.Miscellaneous Lipids

Substances with Lipid characters

- Carotenoids: β-Carotenoid
- Squalene:
- Vitamin E and K
- Eicosanoids

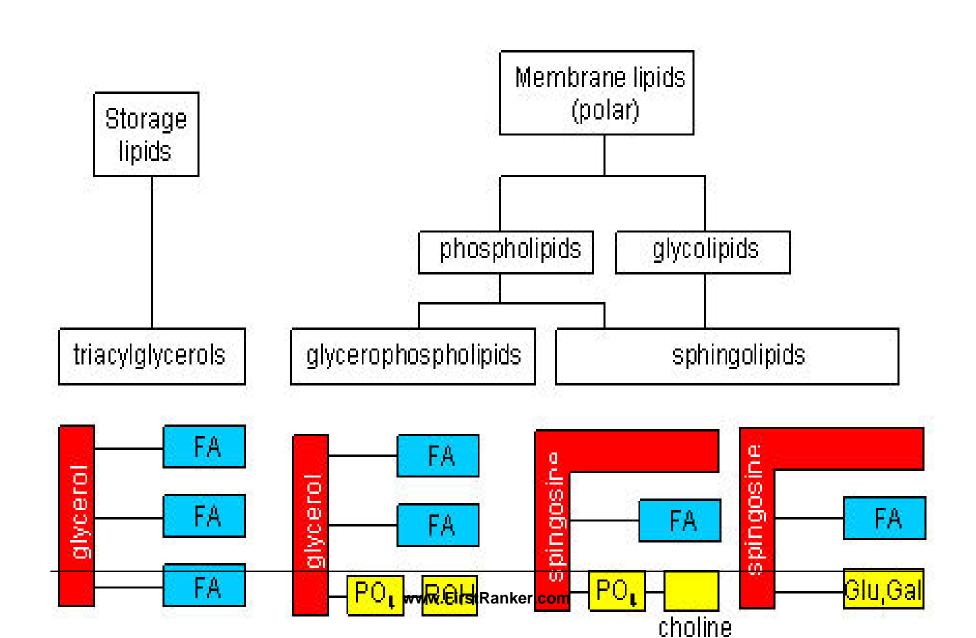
Types of Lipids Depending Upon Polarity

Neutral Lipids: (Non Polar Lipids)

(Contain No polar Groups/Charged groups)

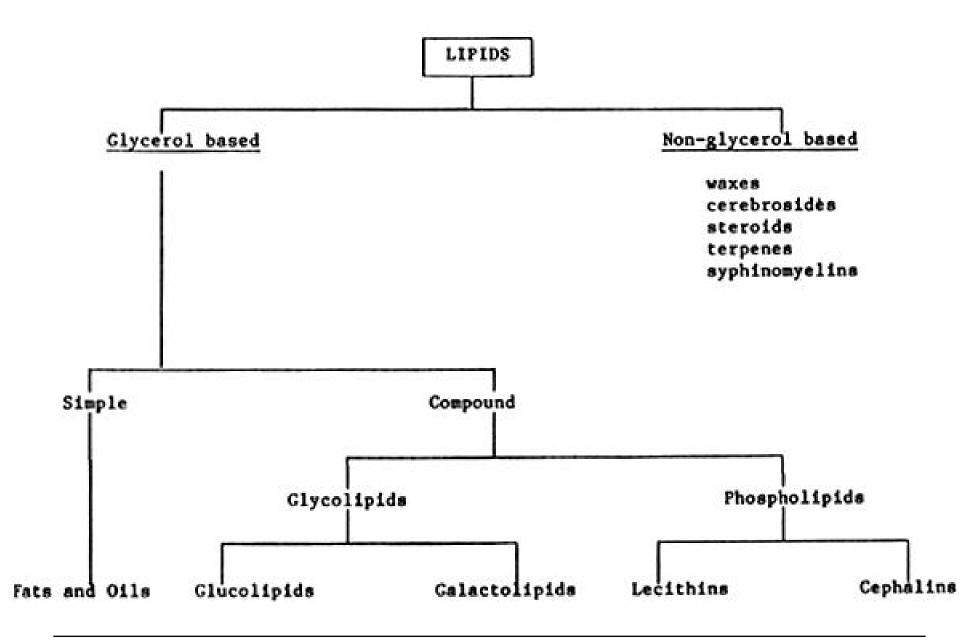
» Triacylglycerol

» Cholesterol Ester (Cholesterol Palmitate)

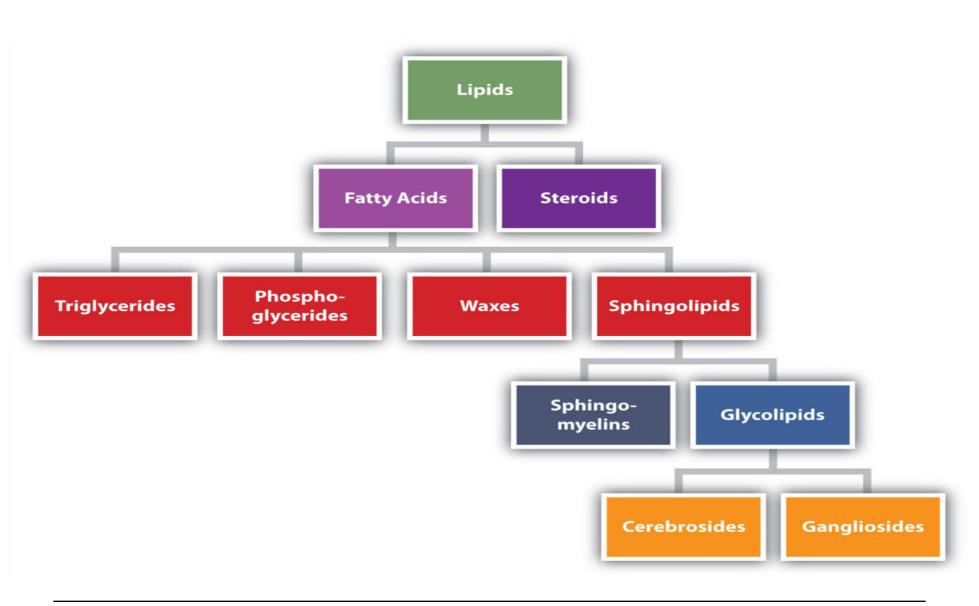

Amphipathic/Amphiphillic Lipids:

(Contain both Polar and Non polar Groups)

- Phospholipids
- Cholesterol

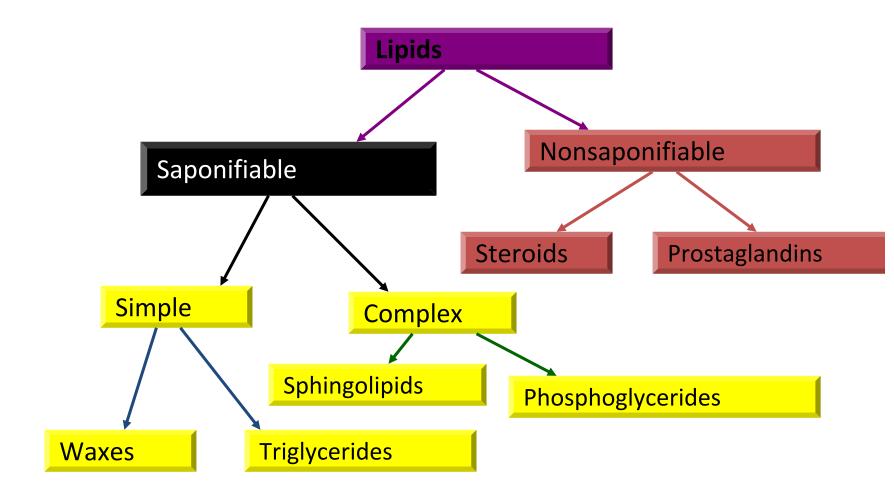


Types of Lipids Depending Upon Functions



Types Of Lipids Based On Alcohol

Types Of Lipids Based Upon the Main Components


Types of Lipids Depending On Saponification Property

Saponifiable Lipids Undergo Alkaline Hydrolysis

- A saponifiable lipid is one who undergo Saponification reaction.
- Saponification is especially an Alkaline hydrolysis of Ester bond of Fat or an Oil to form Soap.
- In saponification an Ester functional group get
 hydrolyzed in presence of Alkaline conditions (NaOH)
 producing a free alcohol and fatty acid salt (Soap)

Lipid Based On Saponification

Study Of Various Classes Of Lipids

Study Of Derived Lipids

Study Of Fatty Acids

FATTY ACIDS (FAs)

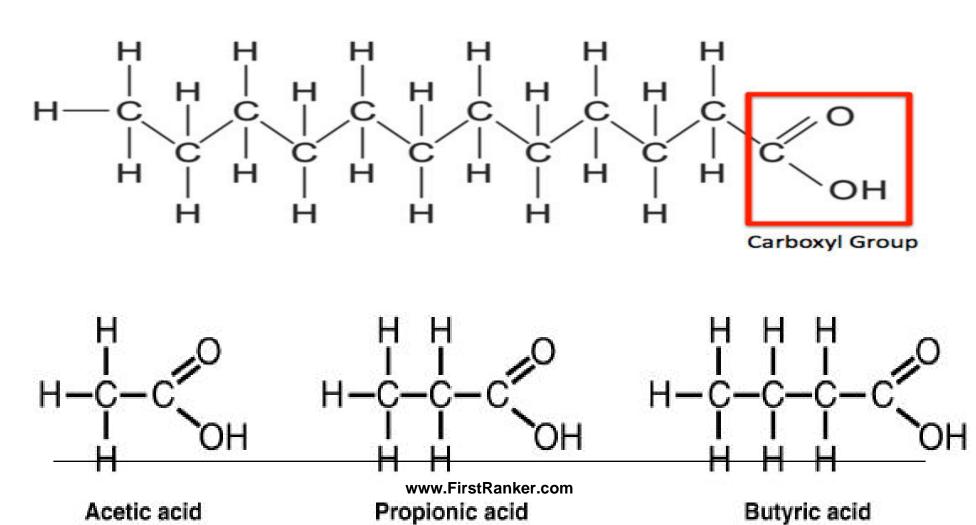
Class- Derived Lipids

BASIC COMPONENT OF LIPID FORMS

What are Fatty Acids?

Fatty Acids Are Derived Lipids

- Fatty acids are of Class Derived Lipids:
 - -Since Fatty acids are Hydrolytic products of Simple and Compound Lipids.


Fatty Acids (FA)

- Fatty Acids (FA) are relatively or potentially related to various Lipid structures.
 - -Simple Lipids
 - -Compound Lipids
 - Derivatives of Lipids

Structure And Chemical Nature Of Fatty Acids

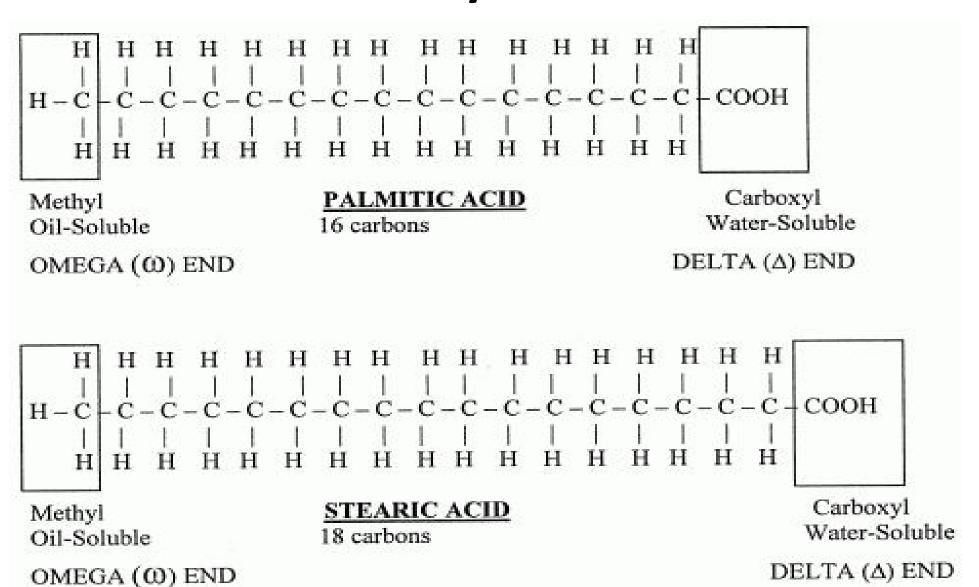
Chemical Structure Of Fatty Acids

Fatty acid Structures Has Varied Hydrocarbon Chains

 The Hydrocarbon chain of each Fatty acid is of varying chain length (C2 - C26).

Human Body Fatty Acid From C2-C26

S.No	Fatty Acid Name	Fatty Acid Structure has Carbon atoms
1	Acetic Acid	C2
2	Propionic Acid	C3
3	Butyric Acid	C4
4	Valeric Acid	C5
5	Palmitic	C16
6	Stearic	C18
7	Oleic www.	Filst Raußer.com


www.FirstRanker.com www.FirstRanker.com		
S.No	Fatty Acid Name	Fatty Acid Structure
8	Linoleic Acid	C18
9	Arachidic Acid	C20
10	Arachidonic Acid	C20
11	Behenic acid	C22
12	Lignoceric acid	C24
13	Cerotic acid	C26

Fatty acid structure have two ends:

- Carboxylic group(-COOH) at one end (Delta end denoted as $\Delta/Alpha$ end α)
- Methyl group (-CH3) at another end (Omega end denoted as ω)

Carboxylic Acid Functional Group Of Fatty Acid

Definition of Fatty acids

Fatty Acids are Defined as:

- Fatty acids are chemically Organic acids
- With Aliphatic Hydrocarbon chain (of varying length C2 to C26) with Mono terminal Carboxylic acid group as functional group.

Different Forms Of Fatty acids In Body

Free Fatty acid /Unesterified Fatty acid

- Fatty acid who has free Carboxylic group
- Fatty acid not reacted and linked to an Alcohol by an Ester bond.

Esterified Fatty acid/Bound form of Fatty Acid

- Fatty acid has no free Carboxylic group
- Fatty acid is linked to an Alcohol with an Ester bond.

Classification of Fatty acids Biomedically Important Fatty Acids

Based On Six Different Modes:

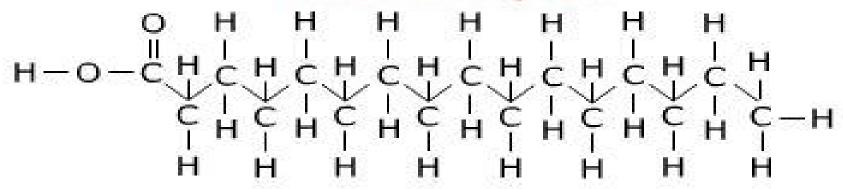
- Classification of FAs Based on Six Modes:
- 1. Total number of Carbon atoms in a Fatty acid structure
- 2. Hydrocarbon chain length of Fatty acid
- Bonds present in Fatty acid
- 4. Nutritional requirement of Fatty acid
- 5. Chemical Nature and Structure of Fatty acids
- 6. Geometric Isomerism of FUE As.com

Fatty acids Based on Total Number of Carbon atoms

- Even numbered Carbon Atom Fatty acids (2,4,6,8,16,18,20 etc)
- Odd numbered Carbon Atom Fatty acids (3,5,7,---)

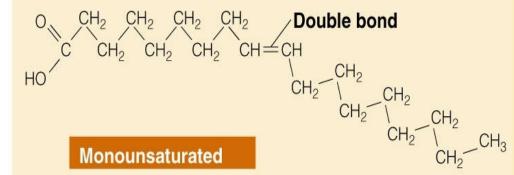
- Most naturally occurring /human body Fatty acids are even carbon numbered FAs.
- Since biosynthesis of Fatty acids uses 2
 Carbon units Acetyl-CoA (C2).

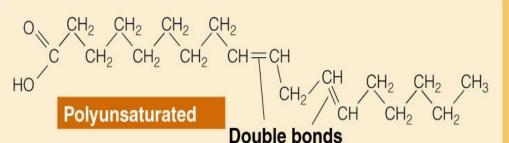
- Examples of Even Carbon Numbered Fatty acids:
 - Butyric Acid (C4)
 - Palmitic Acid (C16)
 - Stearic Acid (C18)
 - Oleic Acid (C18) (Most Common)
 - Linoleic acid (C18)
 - Linolenic Acid (C18)
 - Arachidic acid (C20)
 - Arachidonic acid (C20)


- Odd Carbon numbered Fatty acids are less related to human body
- Example of Odd carbon Fatty acid associated to human body
 - -Propionic Acid (3C)

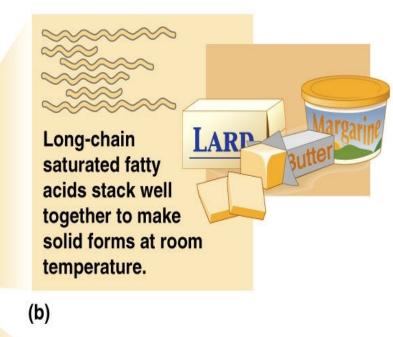
Fatty acids Based on Nature and Number of Bonds present

Fatty Acids


Saturated Fatty Acids



Unsaturated Fatty Acids

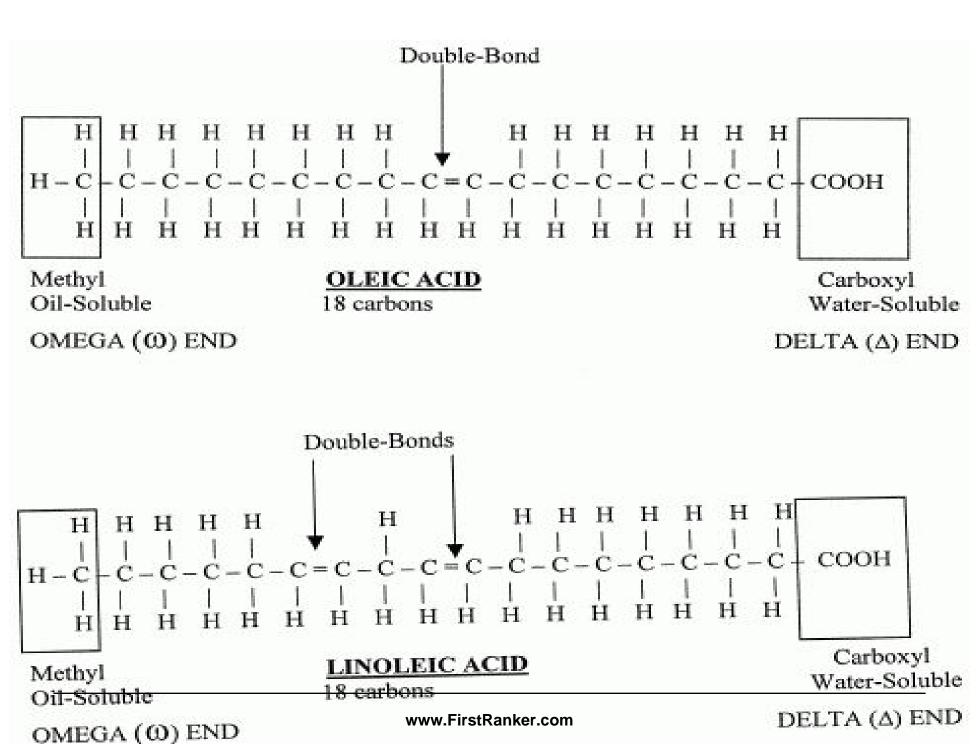


Saturated

(a)

Monounsaturated and polyunsaturated fatty acids do not stack well together because they are bent. These fatty acids are liquid at room temperature.

www.FirstRanker.com



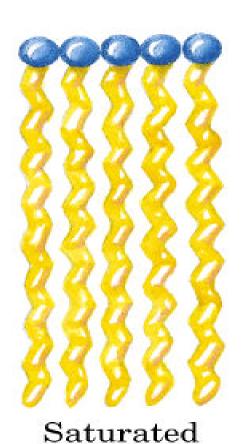
- Saturated Fatty acids(SFAs)
- Fatty acids having single bonds in hydrocarbon chain structure.
- Examples:
 - Acetic acid (C2)
 - Butyric acid (C4)
 - Palmitic acid (C16)
 - Stearic acid (C18)
 - Arachidic acid(C20)

- Unsaturated Fatty acids (UFAs)
- Fatty acids having double bonds in its structure.
 - Types of UFAs:
- Monounsaturated Fatty acids (MUFAs)
- Polyunsaturated Fatty acids (PUFAs)

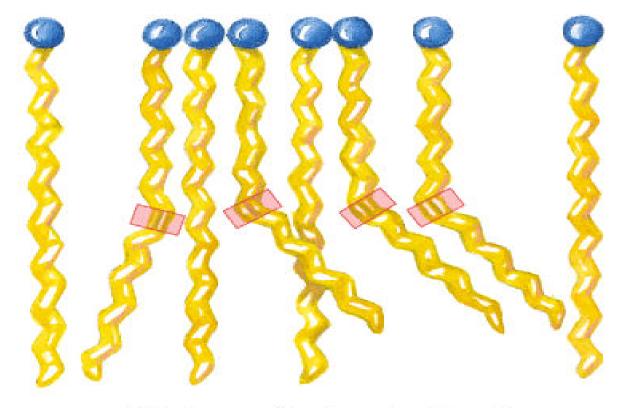
- Human body have no Enzyme system to introduce double bond beyond Carbon atom 10 in the hydrocarbon chain.
- Hence PUFAs are not biosynthesized in human beings.

- Monounsaturated Fatty Acids(MUFAs):
- MUFAs have one double bond in a fatty acid structure
- Examples of MUFAs :
 - Palmitoleic acid (C16:1;9) (ω7)
 - Oleic acid (C18:1;9)(ω9)
 - Erucic acid (C22:1;9)(ω9)

- Poly Unsaturated Fatty Acids (PUFAs):
- UFAs with two or more double bonds in the structure are termed as PUFAs.
 - Examples Of PUFAS:
- Linoleic(18:2;9,12) (ω6)
- Linolenic(18:3;9,12,15) (ω3)
- Arachidonic(20:4;5,8,11,14) (ω6)
- Timnodonic (20:5;5,8,11,14,17) (ω3)
- Cervonic/Docosa Hexaenoic
 acid(DHA)(22:6;4,7,10,13,16,19) (ω3)


- Remember Unsaturated Fatty acids
- Double bonds are:
 - -Weaker /unstable bonds.
 - —Get easily cleavable/metabolized

- —More the degree of Unsaturation in Fatty acids.
- —More is the unstability of Fatty acids.


 Saturated Fatty acids structures are Straight.

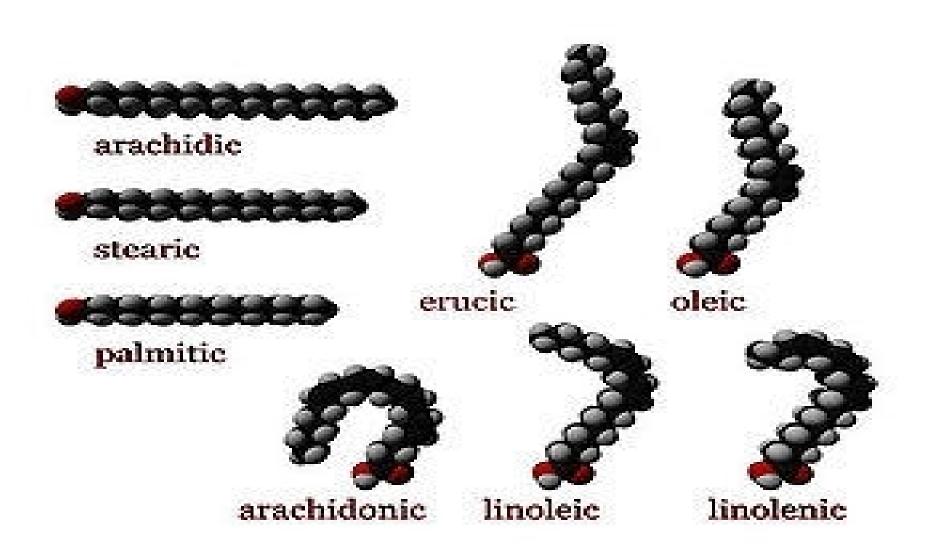
 Unsaturated Fatty acids structures are bent (Kink).

fatty acids

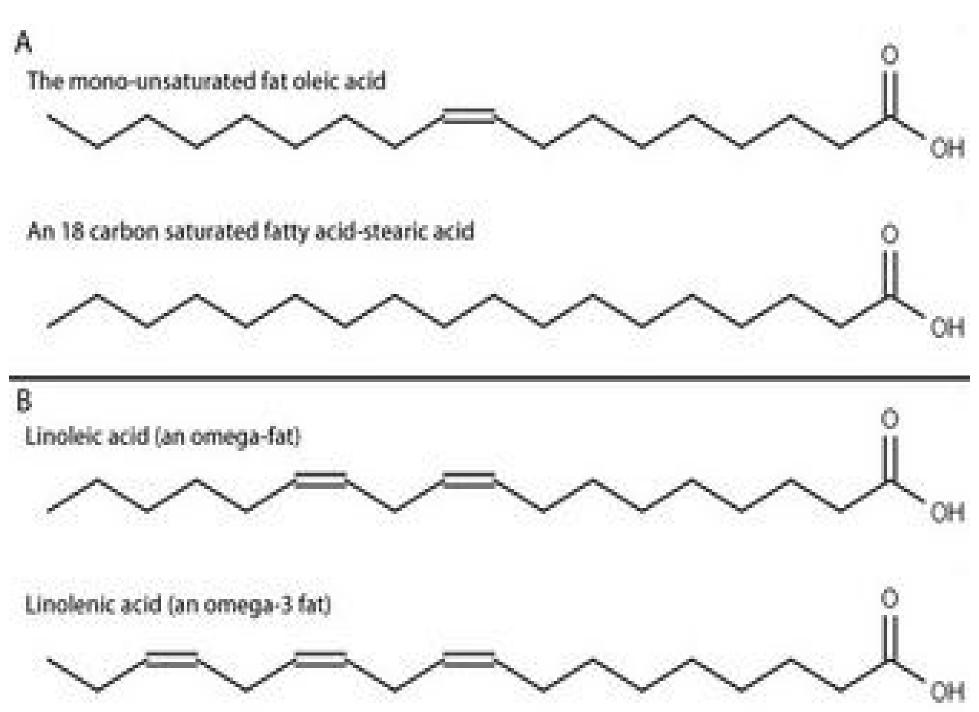
(c)

Mixture of saturated and unsaturated fatty acids

(d)


www.FirstRanker.com

- Saturated FAs: with straight structures are tightly packed together.
- Unsaturated FAs: with bent structures are not compact and has no tight packing.


- More the degree of unsaturation in FA/More double bonds in FA structure
- More is the bent of Fatty acid structure.

Fatty acids Based on the Nutritional Requirement

Nutritionally Essential Fatty acids

- -Nutritionally Essential Fatty acids:
- -Fatty acids not biosynthesized in human body and indispensable through nutrition/diet are termed as Essential Fatty acids.
- -PUFAS are nutritionally essential Fatty acids.

Examples of Essential Fatty Acids/PUFAs:

- **—Linoleic**
- –Linolenic
- -Arachidonic acids
- -Timnodonic and
- -Cervonic

Nutritionally Non Essential Fatty acids

- Nutritionally Non essential Fatty acids:
- Fatty acids which are biosynthesized in the body and are nutritionally non essential Fatty acids.
 - Saturated Fatty acids and MUFAs are non essential Fatty acids.

Examples Of Non Essential Fatty Acids

- Palmitic
- Stearic
- Oleic acid

Based on Geometric Isomerism of Unsaturated Fatty acids

Cis Fatty Acids:

The **Groups around double bond** of Unsaturated FAs are on **same side**.

- Examples:
 - Cis Oleic acid (rich in Olive oil)
 - Palmitoleic acid

• Trans Fatty Acids:

- The groups around double bond of UFAs are on opposite side
- Example:
 - Elaidic acid /Trans Oleic acid (Hydrogenated Fats)

$$CH_3[CH_2]_6CH_2$$
 $CH_2[CH_2]_6COOH$ $CH_2[CH_2]_COOH$ $C=C$ $C=C$ $CH_3[CH_2]_6CH_2$ $CH_3[CH_2]_6CH_2$

Types Of Fatty acids Based on Hydrocarbon chain length

- Short Chain Fatty acids (2-6 Hydrocarbon Chain length)
- Examples:
 - Acetic acid (C2)
 - Propionic acid (C3)
 - Butyric acid (C4)
 - Valeric acid (C5)
 - Caproic acid (C6)

- Medium Chain Fatty acids (8-14 Carbon length)
- Examples:
 - Caprylic acid (C8)
 - Capric acid (C10)
 - Lauric acid (C12)
 - Myristic acid (C14)

- Long Chain Fatty acids (16-20 Carbon length)
- Examples:
 - Palmitic acid (C16)
 - Palmitoleic acid (C16)
 - Stearic acid (C18)
 - Oleic acid (C18)
 - Linoleic acid (C18)
 - Linolenic acid (C18)
 - Arichidic acid (C20)
 - Arachidonic acid /ETA(C20)
 - Timnodonic acid/EPA (C20)

- Very Long Chain Fatty Acids (C22 onwards)
 - Examples:
 - Behenic acid/Docosanoic (C22)
 - Erucic acid/Docosa 13 Enoic (C22)
 - Clupanodonic/Docosapentaenoic acid (DPA) (C22)
 - Cervonic acid/DocosaHexaenoic (DHA) (C22)
 - Lignoceric acid /Tetracosanoic (C24)
 - Nervonic /Tetracosaenoic (C24)
 - Cerotic acid/Hexacosanoic (C26)

Fatty acids Based on Chemical Nature and Structure

-Aliphatic Fatty acids:

Straight Hydrocarbon chain

- Examples:
 - -Palmitic acid (C16)
 - -Stearic acid (C18)

Branched Chain Fatty acids:

Possess Branched chains

• Examples:

-Phytanic acid (Butter, dairy products)

- Cyclic Fatty acids :
- Contains Ring structure
- Examples:
 - Chaulmoogric acid

(Used for Leprosy treatment in olden days)

Hydnocarpic acid

- Hydroxy Fatty acids:
- Contain Hydroxyl Groups
- Examples:
 - Cerebronic acid (C24)/
 - 2-HydroxyTetracosanoic acid

— Ricinoleic acid(C18) (Castor oil)

Naming And Numbering Of Fatty Acids

- Every Fatty acids has a:
 - Common Name
 - Systematic Name

- Most of the Fatty acids are known by their common names. (Since easy to use)
- Systematic names of Fatty acids are limited in use. (Since not easy to use)

Remember

 Long chain Fatty acids are also termed as Acyl chains.

- The systematic names of Saturated Fatty acids are named by adding suffix 'anoic'.
- Example : Palmitic acid- C16/ Hexadecanoic acid

- The systematic names of Unsaturated Fatty acids are named by suffix 'enoic'.
- Example: Oleic acid- C18/ Octadecaenoic acid

S.N	Common Name	Systematic Name
1	Palmitic Acid	Hexadec anoic Acid
2	Stearic Acid	Octadec anoic Acid
3	Oleic acid	Octadecaenoic acid
4	Linoleic Acid	Octadecadienoic acid
5	Linolenic Acid	Octadecatrienoic acid
6	Arachidonic acid	Eicosa tetraenoic acid

Numbering Of Fatty Acids

Numbering of Carbon atoms of Fatty acids is done from:

- -Both ends of Fatty acids-
 - • Δ end/ α end
 - •ω end

Numbering Of Fatty acid From Carboxyl/ Δ end (α end)

- From Carboxyl Group end(∆ end):
- Carboxylic acid group of Fatty acid is numbered as C1
- C2 is next adjacent Carbon atom ,
- C3 and so onn.....

 α Carbon atom is next to the functional group –COOH of a Fatty acid.

www.FirstRanker.com

• Next to α Carbon is β, γ,δ ,ε and so onn.

Use of Greek letters to designate carbons

Carbon atoms from Methyl(–CH3)
 group /non polar end(ω) of a fatty
 acid are numbered as ω1,ω2,ω3
 and so onn.

Structure and nomenclature of fatty acids.

ω-terminus

CH₃-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-COOH

10 9 8 7 6 5 4 3 2 1

ω ω1 ω2 ω3 δ γ β α

COOH

Nomenclature Of Fatty acids

- FA Nomenclature is Based On
- Chain length/Total Number of Carbon atoms in a FA.
 - Count Number of Carbon atoms in FA
- Number and Position of Double bonds
 - Position of double bond from Carboxyl/Delta end
 - Position of double bond from Methyl/Omega

Short Hand Representations of Fatty acids

- Short Hand Representations of Fatty acids:
- -Palmitic Acid (16:0)
- -Palmitoleic acid (16:1;9)
- -\
- First digit stands for total number of carbon atoms in the fatty acid.
- · Second digit designates number of double bonds.
- Third digit onwards indicates the position of double bonds.

Fatty-acid Nomenclature

- Named according to chain length
 - **C18**

Fatty-acid Nomenclature

- Named according to the number of double bonds
 - C18:0

Common name: Stearic acid

Fatty-acid Nomenclature

- Named according to the number of double bonds
 - -C18:1

Common name:
Oleic acid

Fatty-acid Nomenclature

- Named according to the number of double bonds
 - C18:2

Common name: Linoleic acid

Fatty-acid Nomenclature

- Named according to the number of double bonds
 - C18:3

Common name: Linolenic acid

Omega System Nomenclature

• Named according to the location of the **first double** bond from the non-carboxyl **Methyl** end (count from the Methyl end /Omega end ω)

Omega Fatty-acid Nomenclature

- -Stearic acid (18:0)
- -Oleic acid (18:1;9)
- -Linoleic acid (18:2;9,12)
- -Linolenic acid (18:3;9,12,15)
- -Arachidonic acid (20:4;5,8,11,14)

- A Fatty acid may also be designated as:
- Linoleic acid (18C; $\Delta^{9,12}$)
- Linolenic acid (18C; $\Delta^{9,12,15}$)
- Δ indicates from COOH end.
- 9,12,15 are double bond positions from delta end.

Short Hand Presentation of FA

```
14:0 Myristic acid
```

16:0 Palmitic acid

18:0 Stearic acid

18:1 cis Δ^9 Oleic acid ($\omega 9$)

18:2 cis $\Delta^{9,12}$ Linoleic acid (ω 6)

18:3 cis $\Delta^{9,12,15}$ α -Linolenic acid (ω 3)

20:4 cis $\Delta^{5,8,11,14}$ Arachidonic acid (ω 6)

20:5 cis $\Delta^{5,8,11,14,17}$ Eicosapentaenoic acid ($\omega 3$)

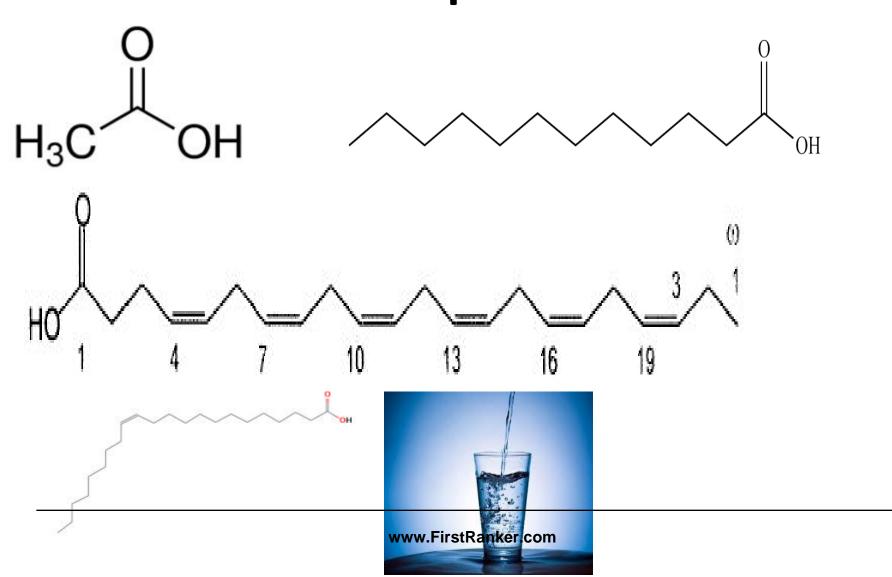
22:5 Cis $\Delta^{7,10,13,16,19}$ Docosapentaenoic acid ($\omega 3$)

Important Properties Of Fatty Acids

Properties Of Fatty Acids

Physical Properties

Chemical Reactions



Physical Properties Of Fatty Acids

1. Solubility

2. Melting Point

Solubility Of Fatty Acids Depends Upon

Factors Responsible For Solubility Of Fatty Acids

- 1. Hydrocarbon chain length
- 2. Degree of Unsaturation- Number of Double Bonds
- 3. Hydrophobicity/Polarity of Fatty acids
- 4. Polarity of Solvents

- Small hydrocarbon chain length are less hydrophobic and more soluble
- Long Chain FA and VLCFA more hydrophobic are very less soluble
- Solubility of Fatty acids decreases with increase in Fatty acid hydrocarbon chain length.
- Double bonds increases solubility

Melting Point of Fatty Acids

Factors Responsible For Melting Points Of Fatty Acids

- 1. Hydrocarbon chain length
- 2. Nature of Bonds
- 3. Degree of Unsaturation/Number of double bonds

Fatty Acids With Decreased Melting Points

- Short and Unsaturated Fatty acids has low melting point
- More degree of unsaturation low is melting point of FAS

Melting Points

- Affected by chain length
- –Longer chain = higher melting temp

Fatty acid: Melting point:

C12:0 44°C

C14:0 58°C C16:0 63°C C18:0 72°C C20:0 77°C

Melting Points

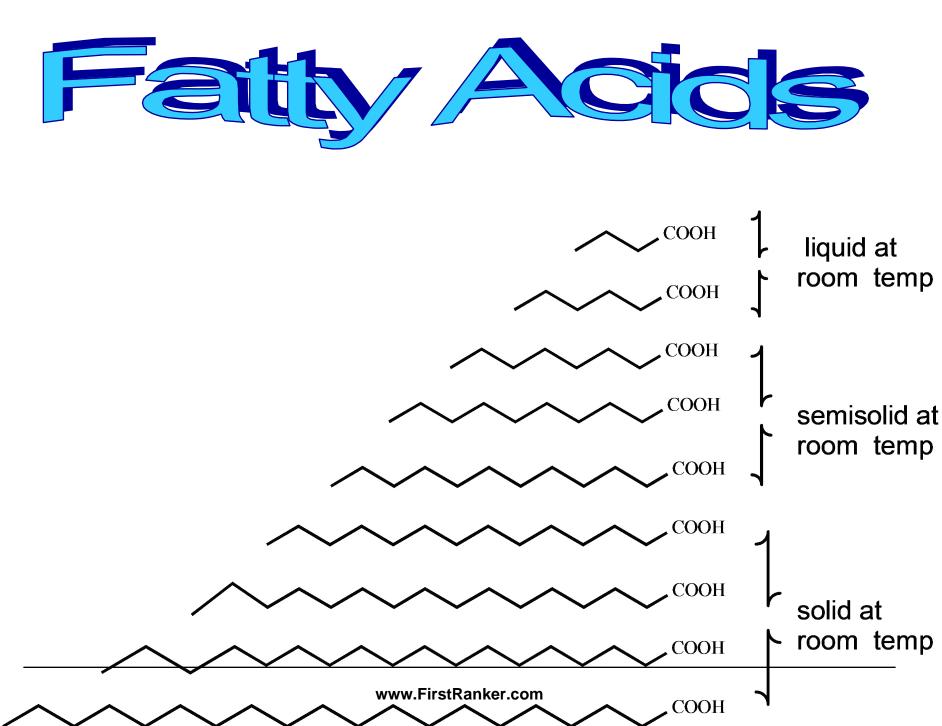
- Affected by number of double bonds
 - –More saturated = higher melting temp

Fatty acid: C18:0 C18:1 C18:2 C18:3 Melting point: 72°C 16°C -5°C -11°C

Number of carbons	s Common name	Systematic name	Structure	Melting point °C
Saturated				
12	lauric acid	dodecanoic acid	~~~~~~COO	OH 44
14	myristic acid	tetradecanoic acid		OH 58
16	palmitic acid	hexadecanoic acid	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	OH 63
18	stearic acid	octadecanoic acid	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	OH 69
20	arachidic acid	eicosanoic acid	COC	OH 77
Unsaturate	ed			
16	palmitoleic acid	(9Z)-hexadecenoic acid	COC	0 Но
18	oleic acid	(9Z)-octadecenoic acid	COC)Н 13
18	linoleic acid	(9Z,12Z)-octadecadienoic acid	Coo	OH −5
18	linolenic acid	(9Z,12Z,15Z)-octadecatrienoic ac	id COC	OH −11
20	arachidonic acid	(5Z,8Z,11Z,14Z)-eicosatetraenoic	acid	OH -50
20	EPA	(5Z,8Z,11Z,14Z,17Z)-eiEosapenta	er.com _{acid} COC	OH -50

Fatty Acids With Increased Melting Points

- Long and Saturated Fatty acids are has high melting point.
- Less degree of Unsaturation more is melting point of Fatty acids


- Thus melting point of Fatty acids(FAs):
 - —Increases with increase in chain length of FAs.
 - Decreases with decrease in chain length of FAs.
 - –Increases with low unsaturation of FAs
 - Decreases with more unsaturation of Fatty acids

Structures and Melting Points of Saturated Fatty Acids

Name	Carbon Atoms	Structure	Melting Point (°C)	Source
Saturated Fatty Ac	rids		521 143	
Capric acid	10	ОН	32	Saw palmetto
Lauric acid	12	ОН ОН	43	Coconut
Myristic acid	14	OH OH	54	Nutmeg
Palmitic acid	16	~~~~~ <mark></mark> он	62	Palm
Stearic acid	18	~~~~	69	Animal fat
Arachidic acid	20	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	76	Peanut oil, vegetable and fish oils

Timberlake, General, Organic, and Biological Chemistry. Copyright © Pearson Education Inc., publishing as Benjamin Cummings

Chemical Reactions Of Fatty Acids

Types Of Chemical Reactions Of Fatty acids

Reactions due to Carboxyl group of Fatty acids:

- Esterification/Esterified forms of Lipids
- Saponification/Soap Formation

Reactions Associated to Double bonds of Fatty acids:

Halogenation/Addition of Halogens around double bond

Hydrogenation/Transform to UFAs to SFAs

Significance Of Halogenation

 Halogenation of fatty acids is an index of assessing the degree of unsaturation

- Iodine Number is a process of Halogenation which checks the content of SFA and PUFAs of Fats and Oils.
- SFA has zero lodine number.
- PUFAs has high lodine number.

Hydrogenation Of Fatty acids

Alters Geometric Isomerism Of Unsaturated Fatty acids

Transforms Natural Cis Form to Trans Form

Increases Shelf life of PUFAs

All-Cis Fatty acids Good for Health

- Human body contain Enzyme system to metabolize Cis form of Fatty acids.
- Cis forms when ingested through food are easily metabolized and does not retain in the body.
- Hence All –Cis forms are good for health and no risk of Atherosclerosis and CVD.
- All Cis form of fatty acids are unstable and easily metabolizable.

- More content of Trans Fatty acids are found in processed/Refined foods viz:
 - Hydrogenated Oils (Vanaspati Dalda)
 - -Ghee
 - -Margarine
 - —Bakery products /Fast foods
 - Deeply Fried recipes in Oils which are prepared in repeatedly heated oils.

- Trans fatty acids increases risk of
 - - -Atherosclerosis
 - -Cardio Vascular disorders:
 - Ischemia
 - Myocardial Infarction
 - -Stroke(Brain attack)

Message Learnt, Understood And To Be Implemented

For Good Fatty acid metabolism and Significant Health

- Eat natural Cis forms of Fatty acids
- Avoid Hydrogenated Trans Fatty acids
- Eat home made food
- Avoid Processed/Junk Foods

PUFAs And Omega Fatty Acids

Types Of Omega Fatty acids

In Nutrition and Clinical practice

»ω3 Fatty acids

»ω6 Fatty acids

»ω7 Fatty acids

»ω9 Fatty acids

CZZT(DPA)

Omega Fatty Acids

Omega 3 Fas PUFAs	Omega 6 Fas PUFAs	Omega 7 Fas MUFAs	Omega 9 Fas MUFAs
Linolenic	Linoleic	Palmitoleic	Oleic –
C18- (ODTA)	C18- (ODDA)	C16-(HDA)	C18(ODA)
Timnodonic			Erucic –
C20- (EPA)	Arachidonic		C22(DA)
Cervonic	C20-(ETA)		Nervonic
C22-(DHA)			C24-(TA)
Clupanodonic			
C22-(DPA)			

Examples of ω3 Fatty acids

- Linolenic (18:3;9,12,15) (ω3)
- Timnodonic/Ecosapentaenoic Acid /EPA (20:5;5,8,11,14,17)(ω3)
- Clupanodonic acid/(Docosa Pentaenoic Acid): (DPA) (C22:5;7,10,13,16,19)(ω3)
- Cervonic/Docosa Hexaenoic Acid
 (DHA)(22:6;4,7,10,13,16,19)(ω3)

Rich sources of dietary Omega and nutritional essential PUFAS are:

- –Vegetable Oils
- -Green Leaves, Algae
- —Fish and Fish oils
- -Flax Seeds

Sources, Distribution, Composition Of Fatty Acids In Human Body

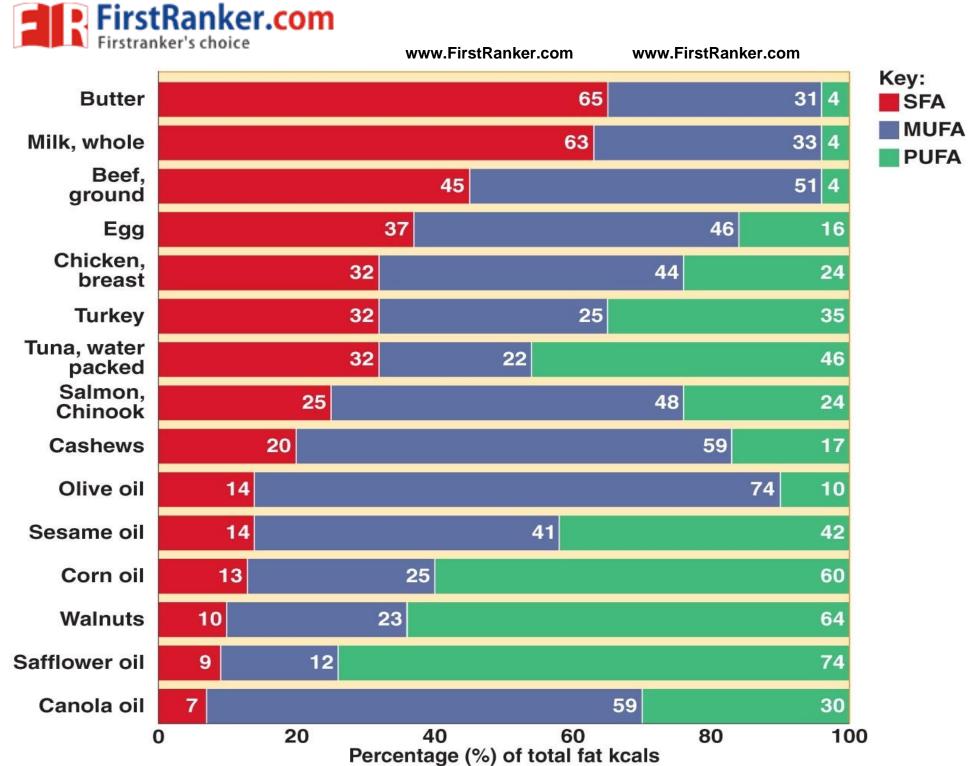
Sources Of Fatty Acids To Human Body

- Exogenous Sources- Dietary Food Items
- Endogenous Biosynthesis- From Free Excess
 Glucose in Liver

Forms of Dietary Fatty Acids To Be Ingested Natural Forms Of Fatty Acids

- Fatty acids in nature mostly presently in
 - Esterified form of FAs— (TAG,PL,CE)
 - Even Numbered Carbon
 - Unsaturated- PUFAs/Omega 3 and 6
 - Cis forms

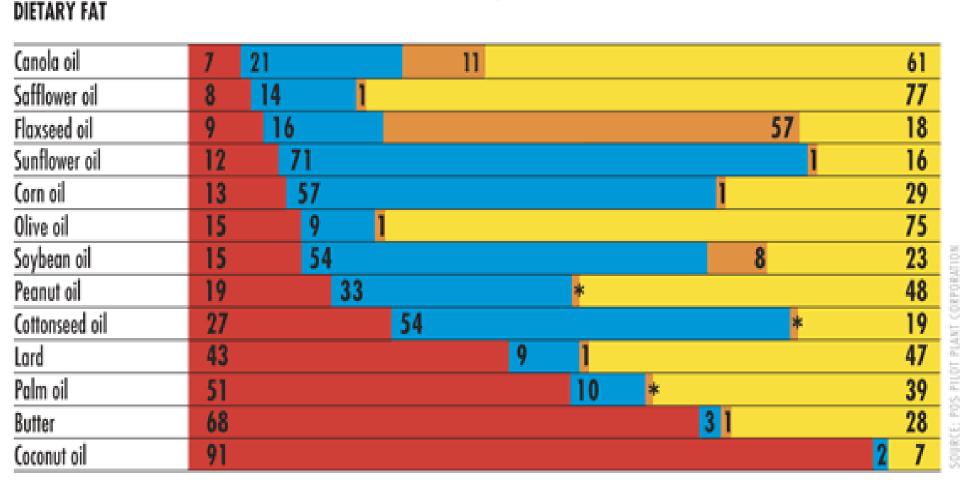
FirstRanker.com www.FirstRanker.com www.FirstRanker.com www.FirstRanker.com			
Contents Of Fatty	acids	Sources	
Highest Content of	of MUFA	Olive Oil	, Mustard Oil
Highest content o	fPUFA	Safflower, Sunflower, Flax seed Oil	
Highest content of SFA		Coconut Oil	
Oils Rich In SFAs		rich in JFAs	Oils rich in PUFAs
Coconut Oil	Olive Oil (75%)		Flax seeds/ Linseed Oil
Palm Oil	Sunflower Oil (85%)		Soya /Safflower Oil
Butter		d nut / nut Oil	Almond Oil
Animal Fat	Almo	nd Oil	Rice Bran
	Sesar	me Oil	Walnuts Oil


Beef Fat (Tallow Fat) 50%

Lard (Pork Fat) 40%

www.FirstRanker.com

Corn Oil

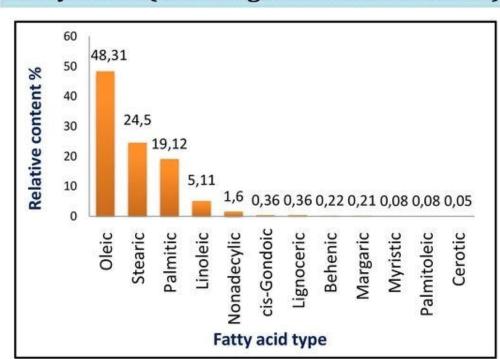

Marine Fish

Comparison of Dietary Fats

SATURATED FAT

© 2011 Pearson Education, Inc.

POLYUNSATURATED FAT


MONOUNSATURATED FAT

1113114111	Ner 3 choice	www.Fir	stRanker.com ww	vw.FirstRanker.com
Fatty Acids	Carbons	Double bonds	Abbreviation	Source
Acetic	2	0	2:0	bacterial metabolism
Propionic	3	0	3:0	bacterial metabolism
Butyric	4	0	4:0	butterfat
Caproic	6	0	6:0	butterfat
Caprylic	8	0	8:0	coconut oil
Capric	10	0	10:0	coconut oil
Lauric	12	0	12:0	coconut oil
Myristic	14	0	14:0	palm kernel oil
Palmitic	16	0	16:0	palm oil
Palmitoleic	16	1	16:1	animal fats
Stearic	18	0	18:0	animal fats
Oleic	18	1	18:1	olive oil
Linoleic	18	2	18:2	grape seed oil
Linolenic	18	3	18:3	flaxseed (linseed) oil
Arachidonic	20	4	20:4	peanut oil, fish oil

Determination of fatty acid profile

Fatty acid		Relative content (%)
Myristic	C14:0	0.08
Palmitic	C16:0	19.12
Palmitoleic	C16:1	0.08
Margaric	C17:0	0.21
Stearic	C18:0	24.50
Oleic	C18:1	48.31
Linoleic	C18:2	5.11
Nonadecylic	C19:0	1.60
cis-Gondoic	C20:1	0.36
Behenic	C22:0	0.22
Lignoceric	C24:0	0.36
Cerotic	C26:0	0.05

Fatty acids (from highest to least as a %)

Total saturated fatty acids

Total MUFA

Total PUFA

S/U

= 46.14%

= 48.75%

5.11%

= 0.86 www.FirstRanker.com

53.86% total unsaturated fatty acids

Fatty acid Composition of Human Body

Fatty acid	Percentage
Oleic acid	50% (MUFA)
Palmitic acid	35% (SFA)
Lionleic acid	10% (PUFA)
Stearic acid	5% (SFA)

- Thus most abundant Fatty acids present in human Lipids are:
 - -Oleic acid (50%)
 - -Palmitic acid(35%)

Ideal Requirement Of Fatty Acids To Human Body

• It is ideal to consume ratio of:

•1 : 1 : 1

SFA MUFA PUFAs

 respectively from the diet to maintain good health.

- Naturally there is no single oil which has all 3 types of fatty acids in ideal proportion.
- Hence it is always advisable to mix a combination of oils and consume.

Transportation Of Fatty Acids In Human Body

Bound form /Esterified
 Forms Of Fatty acids are
 Transported through
 various Lipoproteins.

Fatty acids Transportation In body

- More than 90% of the fatty acids found in plasma are in the form of Fatty acid esters.
 - Fatty acids Esters/Esterifed form of Fatty acids exist as:
 - Triacylglycerol
 - Cholesteryl esters
 - Phospholipids

- Unesterified/Free Fatty acids (FFA)
 are very less amount in body.
- Long Chain FFA are transported in the blood circulation in association with Albumin.

Functions Of Fatty Acids

- 1. Secondary Source Of Energy
- 2. Components Of Biomembranes
- PUFA (Arachidonic Acid) Precursor for Eicosanoid Biosynthesis
- 4. Esterification of Cholesterol and its Excretion
- 5. PUFAs build and protect Brain and Heart
- 6. PUFAs prevents early ageing, prolongs Clotting

time.

- PUFAs of membrane play role in:(Less compact)
 - -Membrane fluidity
 - -Selective permeability

Functions Of PUFAS /Omega 3, and 6 FAs

- Components of cell biomembranes
- More associated to Human brain and Heart
- Involve in Growth ,development and functioning of Brain

- Omega Fatty acids Reduces risk of Heart disease:
 - Reduces Platelet aggregation by stimulating Prostaglandins and Prostacyclin's .
 - Reduces blood clotting and Thrombus formation by Lowering the production of Thromboxane.

- Omega 3 Fatty acids have pleiotropic effects (more than on effect):
 - Cardio protective effect
 - Lowers Blood pressure
 - Anti-Inflammatory
 - Anti-Atherogenic
 - Anti-Thrombotic

PUFAs Lowers Risk Of Atherosclerosis

- Since double bonds of PUFAs are unstable and easily cleavable.
- PUFAs get easily metabolized and do not get accumulated in the blood arteries and capillaries.
- Thus PUFAs have low risk of Atherosclerosis and Cardio vascular disorders.

- Fish (rich in Omega 3 Fatty acids) Eaters has Healthy Brain and Heart
- Brain development with an efficient nervous function.
- Protected from Heart attacks.

- Deficiency of Essential Fatty acids :
 - Affects every cell ,organ and system
 - Growth retardation
 - -Problems with reproduction
 - -Skin lesions
 - Kidney and Liver disorders
 - -Brain disorders/Behavioral disorders.

Deficiency Of PUFAs/ Omega 3,6 Fatty acids

- Deficit of omega fatty acids affect the normal growth, development and functioning of brain.
- Persons may suffer from mental illness like:
 - Depression
 - -Attention deficit
 - Dementia=Alzheimer's Disease

- Deficiency of Omega 3 Fatty acids:
 - -Alters the cell membrane structure.
 - —Increases the risk of
 - Heart attack
 - Cancer
 - Rheumatoid Arthritis

Phrynoderma /Toad Skin is due to PUFA deficiency.

Phrynoderma /Toad Skin Symptoms

- The skin becomes dry with lesions (Scaly Dermatitis).
- Presence of horny erruptions on the posterior and lateral parts of limbs, back and Buttock.
- Loss of hair
- Poor wound healing
- Acanthosis and Hyperkeratosis

Deficiency of PUFAs lower:

- Oxidative Phosphorylation-ATP generation
- Fibrinolytic Activities

Fatty Acids At Glance

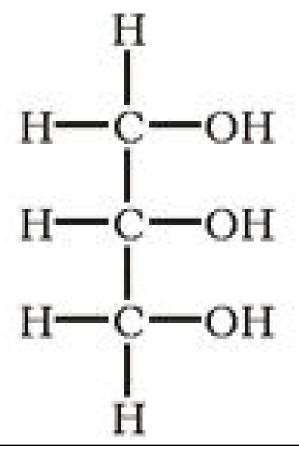
Name of Biomolecule	Fatty acids
Class	Derived Lipids
Structural Features	Organic acids ,Hydrocarbon Chain (C2-26) Terminal Mono Carboxylic Acid
Sources of FAs to body	From Exogenous and Endogenous
Distribution in Body	FAs mostly in esterified form, Associated with Simple and Compound Lipids. Distributed in all tissues.
Functional aspects	Energy, Biomembrane components
Interrelationships	Fatty acids associated to other form of Simple and Compound Lipids

Study Of Derived Lipids Alcohols

Alcohols Involved In Lipid Structures

3 Alcohols Involved In Various Forms Of Lipids

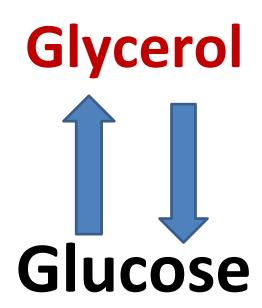
- 1. Glycerol
 - (C3-Trihydric Alcohol)
- 2. Sphingol/Sphingosine (C18-Dihydric Alcohol)
- Cholesterol
 (C27-Monohydric Alcohol)


Alcohols Of Lipids Are Classified As Derived Lipids

Glycerol is a Derived Lipid

Obtained from Hydrolysis of Simple and Compound Lipids

Figure 1. Structure of Glycerol


Glycerol/ Glycerin

- Glycerol [C3] is a POLYOL
- Glycerol is chemically Trihydric
 Alcohol (3 –OH groups)
- Glycerol has potency to interact with 3 same or different Fatty acids.

- Glycerol is a backbone of Glycerol based Lipids viz:
 - Triacylglycerol
 - Glycerophospholipids

Glycerol Sources To Human Body Endogenous and Exogenous Sources

Source Of Glycerol To Human body

- Glucose is responsible for biosynthesis of Glycerol in human body
- Glucose transforms to Glyceraldehyde,
- Glyceraldehyde on reduction forms Glycerol.

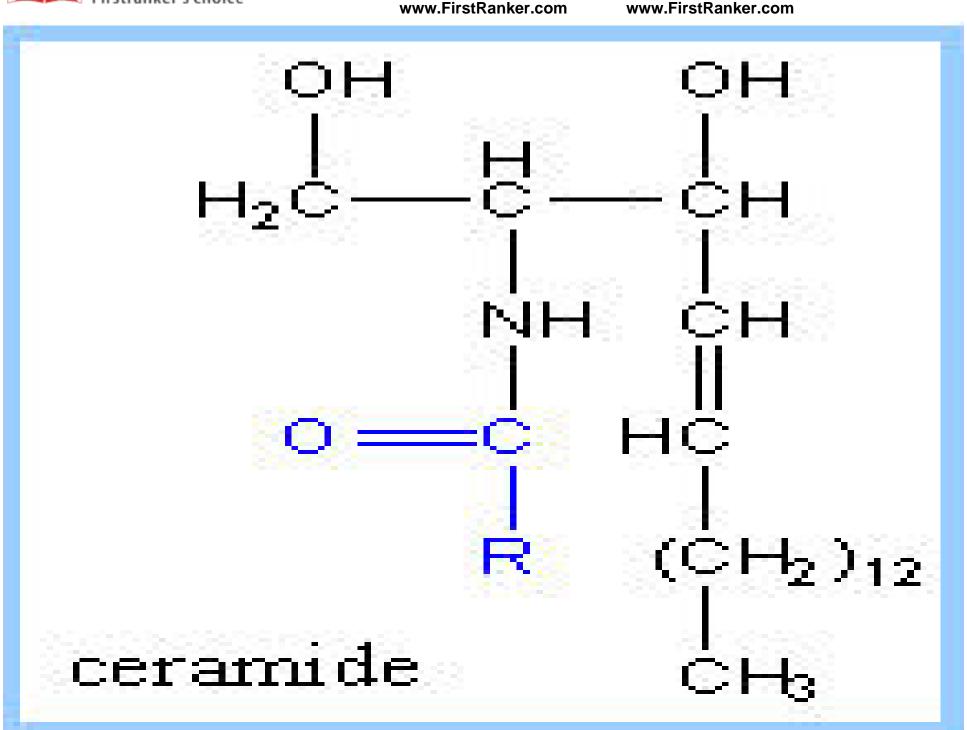
Glycerol formed is then used for Biosynthesis of Glycerol based Lipids.

 Glycerol released from hydrolysis of Glycerol based Lipids is transformed to Glucose.

SPHINGOSINE/SPHINGOL

Sphingosine

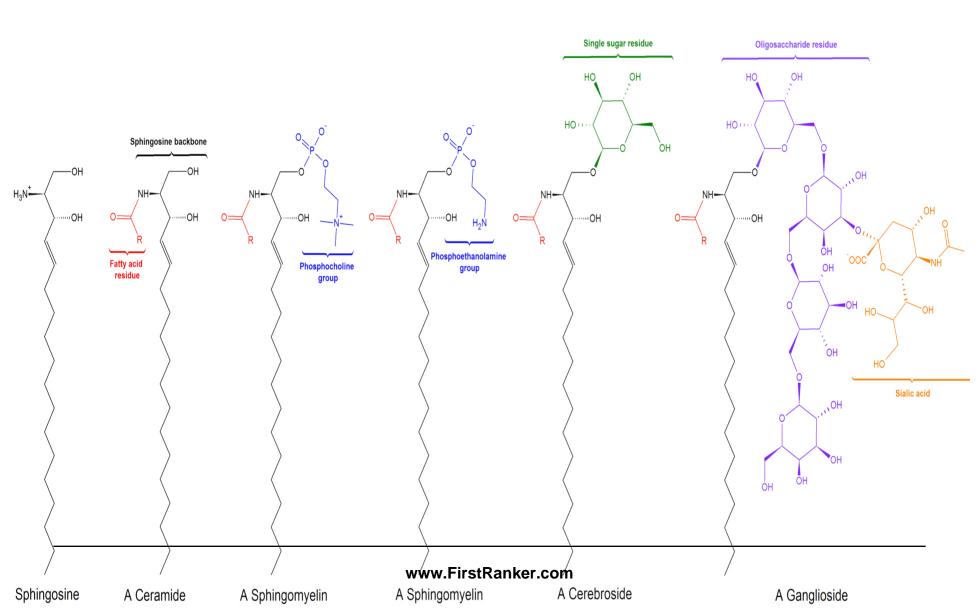
 Sphingosine is a derived Lipid.


 Obtained from Hydrolysis of Sphingolipids

- Sphingosine is a C18, complex Dihydric, Amino alcohol.
- Sphingosine is biosynthesized in human body using amino acid Serine.
- Serine provides NH2 group of Sphingosine.

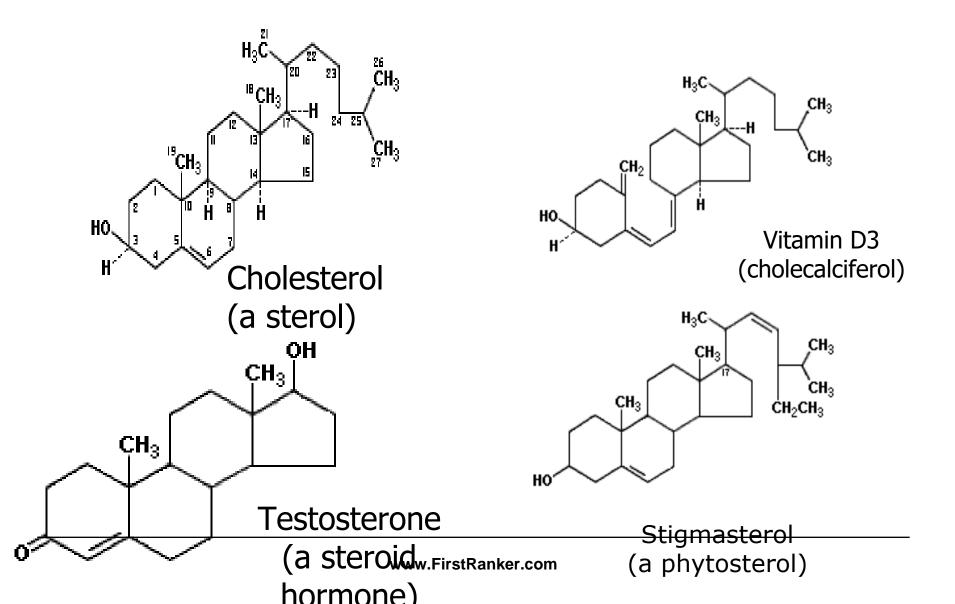
- Sphingosine forms Sphingolipids /Compound Lipids with Alcohol Sphingol
- Examples of Sphingolipids:
 - Sphingophospholipids
 - Sphingoglycolipids

What Is a Ceramide?


- A Fatty acid linked to an amino group of Sphingosine
- With an amide linkage form a Ceramide.

 Ceramide if linked to Phosphate and Nitrogenous groups forms
 Sphingophospholipids.

 Ceramide linked to Carbohydrate moieties form Sphingoglycolipids.


Sphingosine Based Lipids

Sterols

Common Sterol And Steroids

 Sterols are chemically complex, organic monohydric Alcohols.

 Sterols has cyclic ring structures

- Sterols have a parent ring
- Cyclo Pentano Perhydro Phenantherene (CPPP) nucleus.

Examples Of Sterols

- Cholesterol (Animal Sterol)
- 7 Dehydrocholesterol (Provitamin D)
- Coprosterol (Excretory form Cholesterol)
- Ergosterol (Plant Sterol)
- Sitosterol (Plant Sterol)

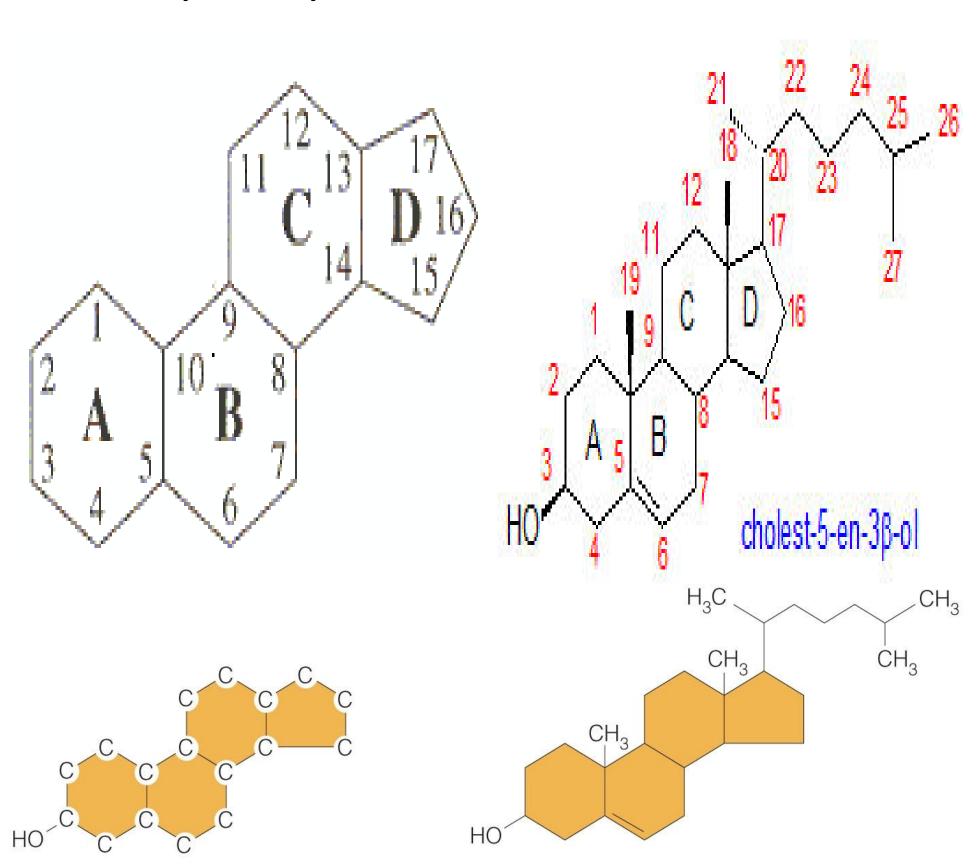
Cholesterol

Most abundant Sterol of Human body

Cholesterol

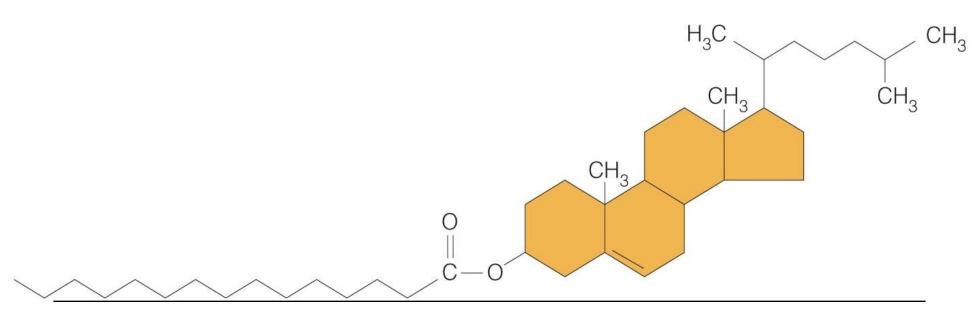
- Cholesterol is an Animal Sterol.
- Cholesterol means Solid Alcohol as it was first obtained from gall stones of bile.
- Cholesterol is excreted via bile hence richly composed in bile ,Gall stones.

Cholesterol Is A Derived Lipid


 Cholesterol is classified as Derived Lipid.

• It is derived from hydrolysis of Cholesterol Ester (Human Body Wax).

Chemical Structures Of Cholesterol and Cholesterol Ester



Pentahydrophenantrene (Sterane)

(a) Sterol ring structure

(b) Cholesterol

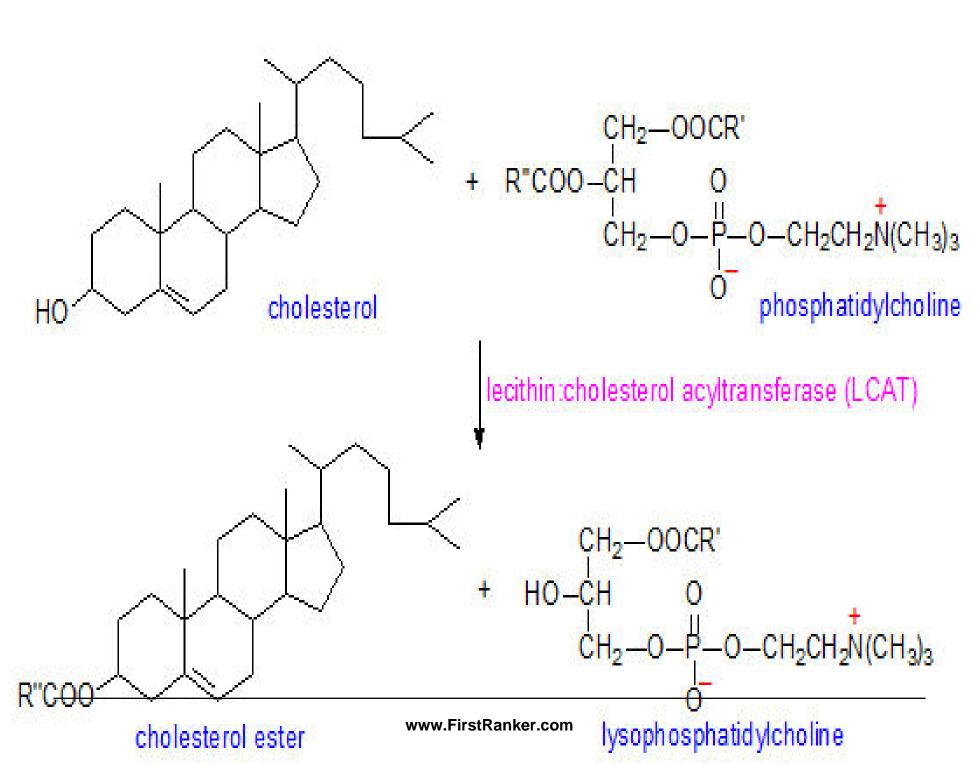
Structure Of Cholesterol

• Cholesterol is complex, cyclic, unsaturated, monohydric Alcohol.

Molecular formula is C27H45OH

- Cholesterol has parent nucleus as Cyclo Pentano Per hydro Phenantherene ring system(CPPP).
- The structure of CPPP has four fused cyclic rings (A,B,C and D)

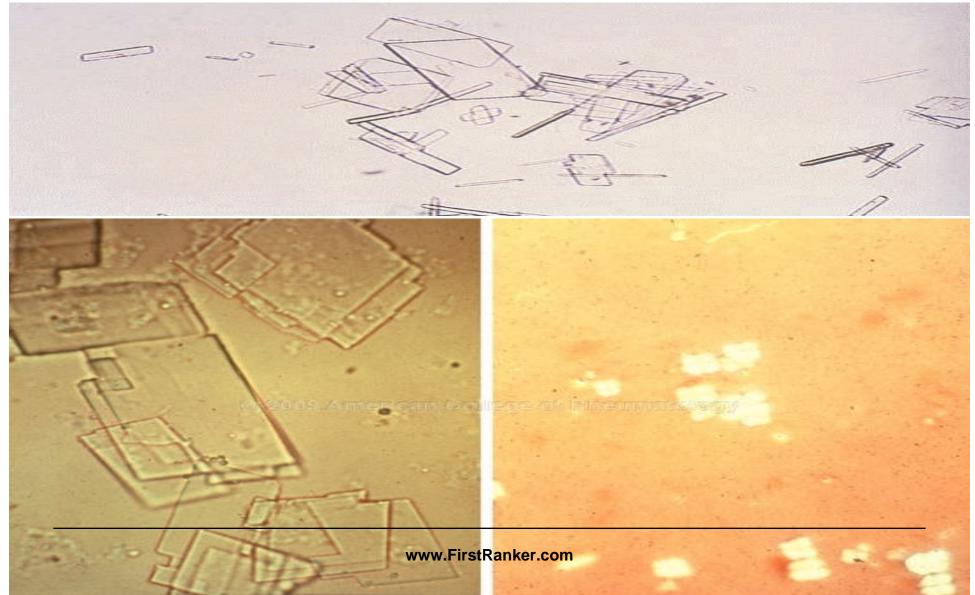
 Hexane ring A,B,C is a Phenatrene nucleus.


• D ring is Cyclopentane ring.

- The Structure of Cholesterol Possess:
- 1. Hydroxyl group (-OH) at C3.
- 2. Double bond between C5 and C6.
- 3. 5 Methyl (-CH3) groups.
- **4. 8 Carbon side chain** linked to C17 of the structure.

Forms Of Cholesterol In Human Body

- Cholesterol exists in two forms:
 - —Free Cholesterol 30%
 (Amphipathic form)
 - -Cholesterol Ester 70%
 (Non polar form)



Properties Of Cholesterol

- Cholesterol is white or pale yellowish, crystalline,odorless compound.
- Insoluble in water and soluble in organic solvents like Ether and Chloroform.

Crystals of Cholesterol Rhombic plates with Notched edges.

Qualitative Tests For Cholesterol detection are:

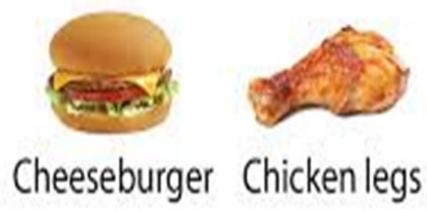
- –Liebermann Burchard Reaction
- -Salkowski Reaction
- -Zak's Reaction

Sources Of Cholesterol To Human Body

- Exogenous Sources of Cholesterol:
 - -Animal Origin Food Items
- Endogenous Source Of Cholesterol:
 - Obtained In well fed condition from Excess Glucose

Dietary Sources Of Cholesterol

 Cholesterol is exclusively present in animal foods.


- The dietary rich sources of Cholesterol animal origin foods like:
 - —Egg Yolk
- Foods High in Cholesterol
- -Meat
- -Milk
- —Butter
- -Ghee
- —Cream

 Remember Cholesterol is absent in plant origin food items.

Endogenous Source Of Cholesterol

 Cholesterol Biosynthesized in human body from Free Excess
 Glucose in Liver.

Transportation Of Cholesterol

-Cholesterol in blood is transported by Lipoproteins:

- Chylomicrons (Dietary origin)
- LDL (From Hepatocytes to Extra hepatocytes)
- HDL (From Extra hepatocytes to Hepatocytes)

Occurrence and Distribution Of Cholesterol in the Body

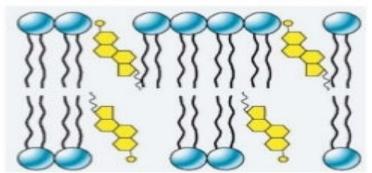
—70 % of Cholesterol associated with cellular components

-30 % of Cholesterol is in the Blood.

- Cholesterol is richly present in Nervous tissue Brain.
- Other organs containing Cholesterol are:
 - **–Liver**
 - -Adrenal Cortex
 - -Gonads
 - -Intestinal Mucosal cells
 - -Skin

Functions Of Cholesterol

Depends Upon


Quality and Quantity

- Cholesterol is constituent of biomembranes of cell
- It give structure, shape and fluidity to them.

Cholesterol

- Embedded in membrane
- Helps stabilize and strengthen the cell membrane
- Important in cell metabolism
- Hydroxyl (OH) group is oriented to the outside

Effects on Membrane without Cholesterol

In Cold Environment	In Hot Environment	
Rigid/ Not Flexible	Too Flexible	
Not Fluid	Very Fluid	
May Get damage	Not hold Shape	
_,		

www.FirstRanker.com

Cholesterol richly present in nervous tissue and covers Myelin sheaths.

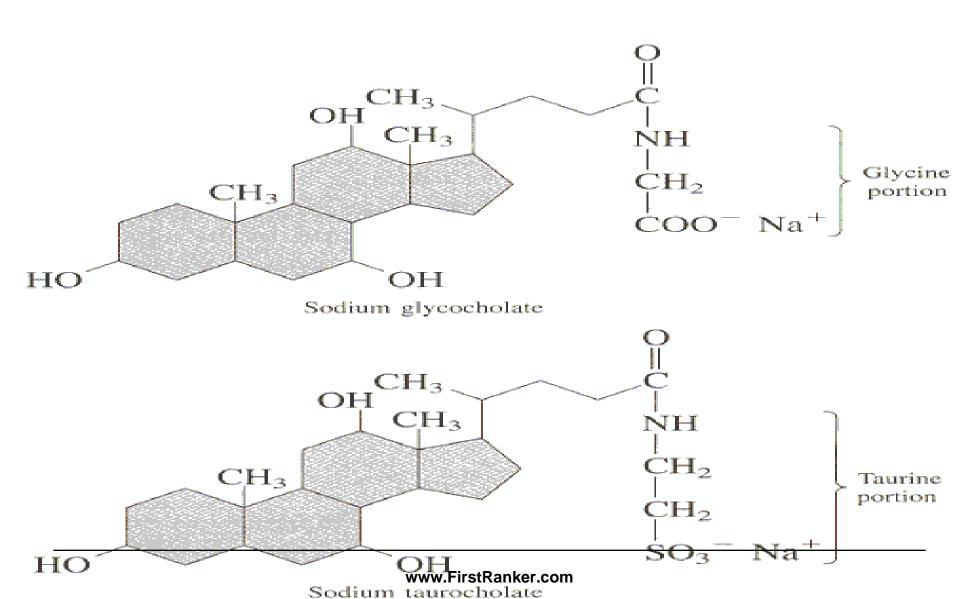
• Cholesterol help in nerve impulse conduction.

- Cholesterol helps in nerve impulse transmission since:
 - -It has high dielectric constant.
 - —It is a poor conductor of heat and electricity.

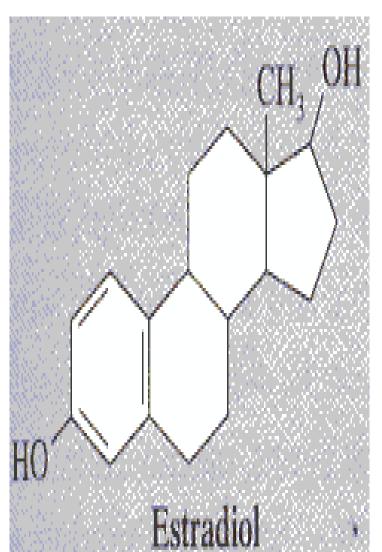
Cholesterol Serves Precursor for Biosynthesis Of Many Steroids

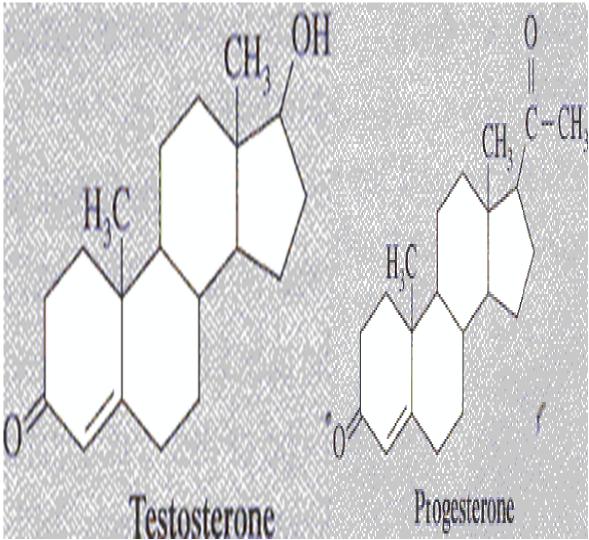
Derivatives of Cholesterol

Steroids are derivatives of Sterols.


 Chemical Compounds obtained from Cholesterol are termed as Steroidal compounds.

Derivatives of Cholesterol


- Vitamin D (Cholecalciferol)
- Bile acids (Cholic and Chenodeoxycholic acid)
- Bile Salts are obtained from Bile acids.
- Steroidal Hormones
 - -ACTH
 - Mineralocorticoids
 - -Glucocorticoids
 - Sex Hormones: Androgens, Progesterone,Estrogen and Testosterone

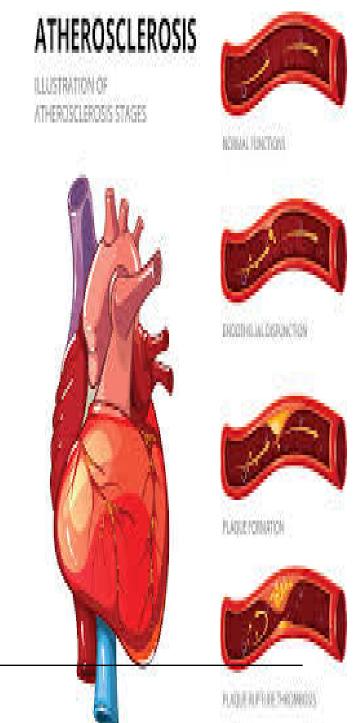

Bile Acids and Bile Salts

Steroids Hormones

Disorders Related To Cholesterol

Serum Total Cholesterol level of a Healthy human body is 150-200 mg%

Hypercholesterolemia


- Causes for Hypercholesterolemia
- **High intake** of dietary Cholesterol(animal origin) is a exogenous source of Cholesterol.
- Elevated endogenous Cholesterol biosynthesis when a very rich Carbohydrates is ingested.
- Defect in Cholesterol transport by Lipoproteins in blood retains Cholesterol in blood.

Conditions Of Hypercholesterolemia

- Diabetes mellitus
- Obstructive Jaundice
- Nephrotic Syndrome
- Hypothyroidism

- Hypercholesterolemia leads to:
 - Deposits of excess of
 Cholesterol in blood vessels.
 - Atherosclerosis and atheroma/plaque formation.
 - Increased risk of ischemia and Myocardial infarction and Stroke.

-Cholesterol Summary

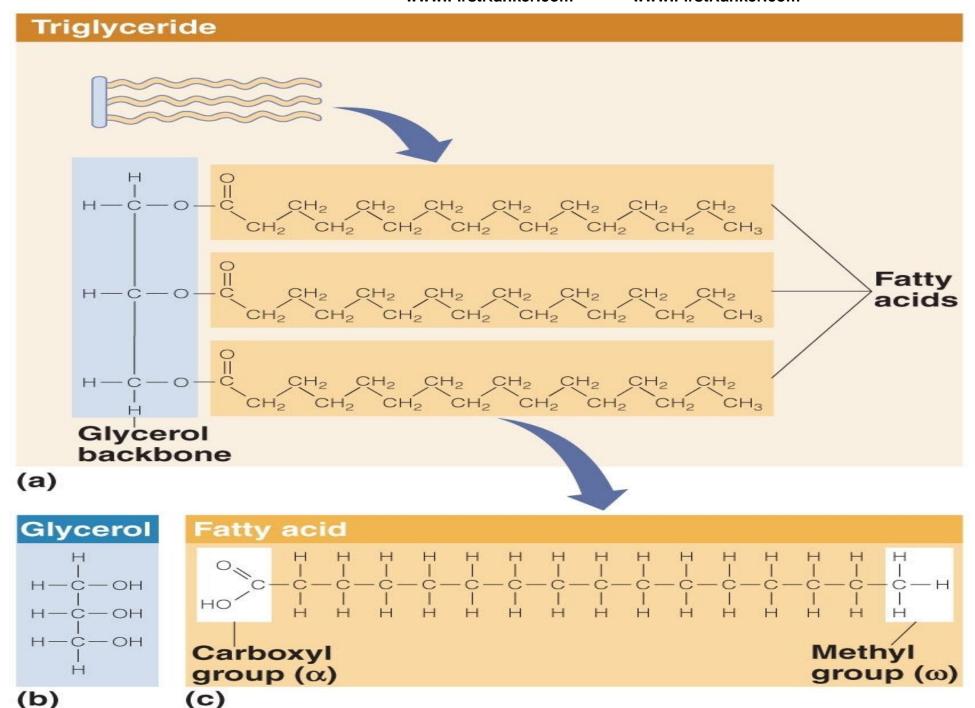
- —Cholesterol is exclusively found only in animals.
- -Exogeneous Cholesterol comes from diet
- -Endogeneous Cholesterol is biosynthesized by the Liver from Glucose product Acetyl-CoA.
- Cholesterol is an important component of biomembranes, steroidal hormones, bile acids and Vitamin D

Study Of Simple Lipids/Neutral Lipids

Triacylglycerols/Triglycerides

 Chemical name of Fat/Oil is Triacylglycerol (TAG).

TAG is a Simple, Glycerol based ,Neutral Lipid.


Chemical Structures Of Triacylglycerol (TAG)

Triacylglycerol/Fats/Oils

- TAG/Fats/Oils are
- Chemically Esters of
- Three Fatty acids (Same or Different)
- with one Glycerol (Trihydric Alcohol).

© 2011 Pearson Education, Inc.

Most Common Fatty Acids in Triacylglycerol

Fatty acid	Carbon:Double bonds	Double bonds
Myristic	14:0	
Palmitic	16:0	
Palmitoleic	16:1	Cis-9
Stearic	18:0	
Oleic	18:1	Cis-9
Linoleic	18:2	Cis-9,12
Linolenic	18:3	Cis-9,12,15
Arachidonic	20:4	Cis-5,8,11,14
Eicosapentaenoic	20:5	Cis-5,8,11,14,17
Docosahexaenoic	22:6	Cis-4,7,10,13,16,19

TAG is Neutral or Non polar lipid.

 Since TAG structure has no charged/polar groups in its structure.

Types Of Triacylglycerol

Based On Nature Of Fatty Acid

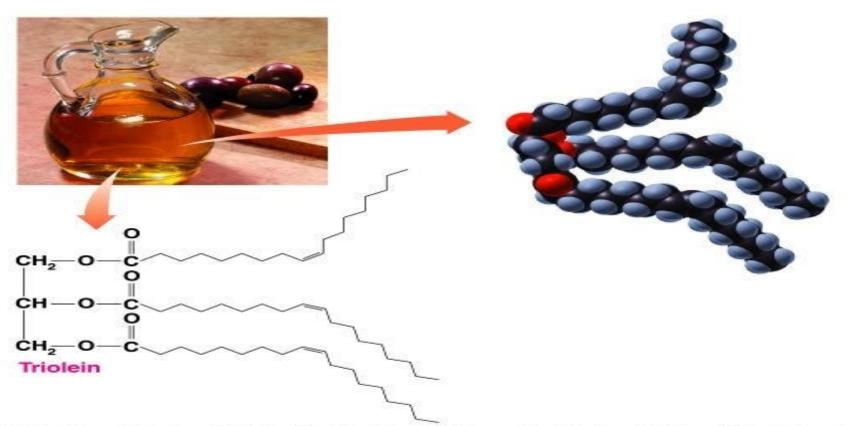
Simple TAGMixed TAG

$H_2C - O - C - CH_2(CH_2)_{13}CH_3$ $H_2C - O - C - CH_2(CH_2)_{13}CH_3$ $H_2C - O - C - CH_2(CH_2)_{13}CH_3$ $H_2C - O - C - CH_2(CH_2)_{13}CH_3$

Tristearin

$$H_{2}C - O - C - CH_{2}(CH_{2})_{11}CH_{3}$$
 $H_{2}C - O - C - CH_{2}(CH_{2})_{11}CH_{3}$
 $H_{2}C - O - C - CH_{2}(CH_{2})_{13}CH_{3}$
 $H_{2}C - O - C - (CH_{2})_{7}CH = CH(CH_{2})_{7}CH_{3}$

- Simple TAG: Three same Fatty acids are esterified to Glycerol to form simple TAG.
- Examples of Simple TAG:
 - -TriPalmitin
 - -TriStearin
 - -TriOlein


• Mixed TAG:

- The 3 different Fatty acids esterified to Glycerol to form a mixed TAG.
- Mixed TAG's are more predominant in nature.
 - In a Mixed TAG
- First Carbon C1 -has Saturated Fatty acid
- Second position C2-has Unsaturated Fatty acid-PUFA
- The 3 rd position C3 Fatty acid in TAG has
 - either Saturated/Unsaturated fatty acid

Olive Oil Rich In Simple TAG

 Olive oil contains mostly TAG as Triolein, which has three Oleic acids.

Timberlake, General, Organic, and Biological Chemistry. Copyright © Pearson Education Inc., publishing as Benjamin Cummings

Sources OF Triacylglycerol To Human Body

- –Exogenesis source of TAG :
 - Dietary Fats/Oils
- -Endogenous source of TAG:
 - Liver Lipogenesis in well fed condition
 - Using Glucose product Acetyl-CoA.

Dietary Sources Of TAG

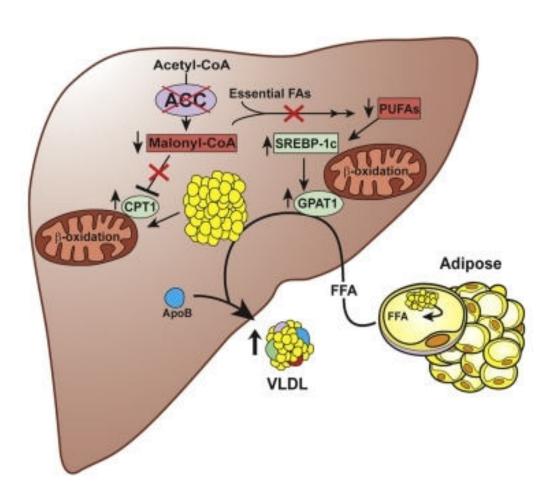
- Animal Fat (Solid)
- Plant Oils (Liquid)

Fats (solid Triacylglycerol) Oil (a liquid Triacylglycerol)

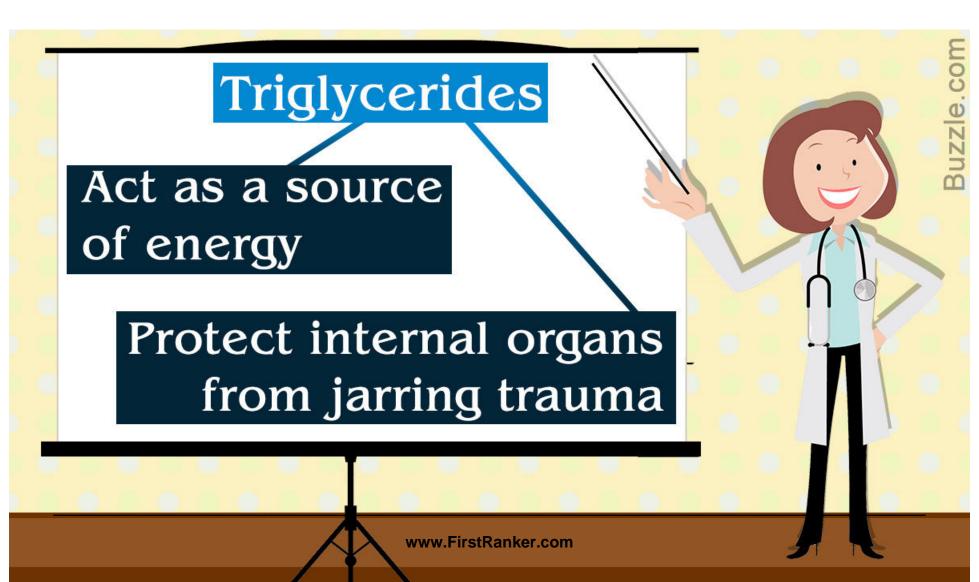
Occurrence/Distribution Of TAG

☐TAG is a most widely distributed abundant natural lipid.

TAG Major Lipid Form Of Human Body


-Predominant Lipid ingested in Human diet is TAG 98%.

-Abundant Lipid of human body Lipid is TAG 95 %.



Transportation Of TAG in blood is By Lipoproteins

- » Chylomicrons:
- »Transports exogenous dietary TAG
- » VLDL:
- » Transports endogenous TAG

Biomedical Importance Of TAG

S.No	IrstRanker.com Instranker's choice Www.FirstRanker.com Distribution/Location Of TAG in Human Body	www.FirstRanker.com Role of TAG
1	Predominant Dietary Form of Lipid Ingested in GIT	Dietary and Calorific Value- Secondary Source of Energy
2	Adiposecytes/Depot Fat- Exclusively TAG	Reservoir of Energy
3	Subcutaneous layer /Below Skin	Insuating Effect, Regulates Body Temperature
4	Fat Pad around Internal Soft Visceral Organs	Mechanical Shock absorbers

1.TAG Serves As Source Of Energy

 TAG has high calorific value (9Kcal/gram) more than Carbohydrates (4 Kcal/gram).

2.TAG Reservoir Of Energy

Storage form of Lipid in human body is TAG.

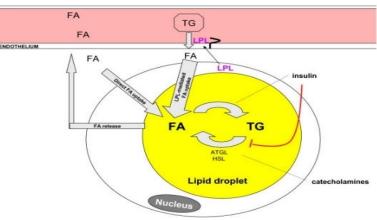
Triacylglycerols In Its Structure

Links and Stores Fatty acids

- Fatty acids are not stored in free form in living beings.
- Fatty acids are stored in bound form as TAG.
- Thus TAG is a storage form of Fatty acids.

Criteria's For TAG To Be Chosen As Reservoir of Energy

 TAG is highly reduced and anhydrous form.


 Hence chosen as energy reserve of the body.

www.FirstRanker.con

- Because of insolubility of TAG in aqueous phase:
- Body TAG are mostly found in isolated compartments as droplets.
- TAG in anhydrous form is packed

in Adipocytes (Depot Fat)

3.Store House Of TAG
is High
In Comparison To
Glycogen Stores

 More content of energy can be stored by TAG in comparison to Glycogen stores.

1 gm of anhydrous TAG
 stores more than 6 times as
 much as energy as 1 gm of
 hydrated Glycogen.

- Hydrated molecules requires more space.
- TAG stored in anhydrous form requires less space.
- In contrast Glycogen being hydrated requires more space.

(1 gm of Glycogen binds with 2gm of water)

- TAG When excess serves as an energy reservoir stored in Adipocytes as:
 - —Anhydrous form
 - –Concentrated
 - -Unlimited amount

 Stores of TAG are utilized in between meals and starvation phase.

 A good storage of depot Fat can suffice for 2-3 months in starvation condition.

- The stored TAG is used as long term energy source for body activities.
- In long marathon race energy for muscle activity is provided by the hydrolysis of depot TAG.

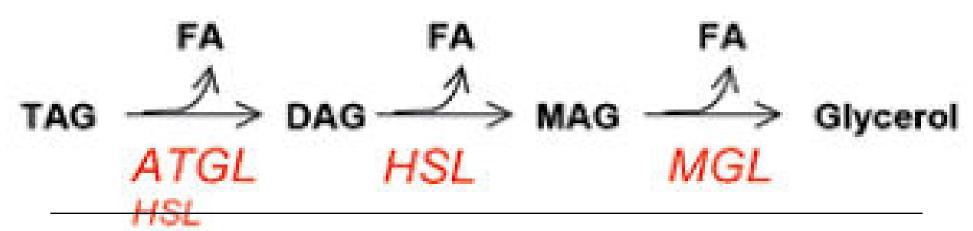
4. TAG Regulates Body Temperature

- The subcutaneous Fat layer is a TAG
- TAG is a bad conductor of heat and electricity and serves as a thermal and electrical insulator.
- Which prevents loss of heat from the body and plays important role in regulating body temperature.

5.TAG Protects Internal Visceral Organ and Systems

- A presence of Fatty (TAG) pad around the soft delicate internal visceral organs
- Protects from mechanical trauma or injury by acting as a shock absorber.

- TAG provides shape to body and
- Keep skin smooth and supple.



Remember TAG is not associated to biomembranes.

- MAG and DAG are derived Lipids.
- Monoacylglycerol and Diacylglycerol are hydrolytic products of Triacylglycerol.
- These are produced during TAG metabolism in the body.

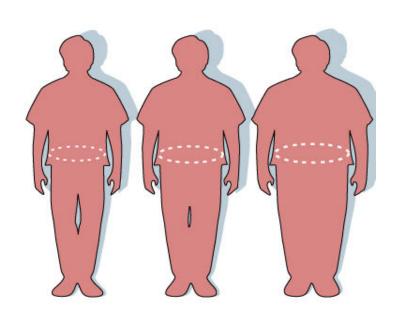
- -Monoacylglycerol (MAG) /(Monoglycerides): A Glycerol esterified with one fatty acid.
- -Diacylglycerol (DAG) (Diglycerides):
- A Glycerol esterified with two fatty acids.

Healthy TAG In Human Body

- Ingesting Natural Mixed Form PUFAs and Short chain FAs
- Avoiding Trans Fats
- Balanced/Moderate ingestion
- No excess or deficient TAG stores
- Normal serum TAG levels < 150 mg%

Disorders Associated To TAG

Triglyceride Levels


Normal, Borderline, High, Very High

Interpretation	Level mg/dL	Level mmol/L
Normal range, low risk	<150	<1.69
Borderline high	150-199	1.70-2.25
High	200-499	2.26-5.65
Very high: high risk	>500	>5.65

Bad About : TAG/ Fats and Oils

- Excess Fat leads to Obesity
- -Increases risk for **Diabetes Mellitus**
- Leads to Coronary Artery disease
- -MI, Stroke
- Susceptible to Cancer

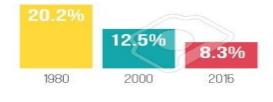


Disorders Related To TAG

- Normal Fat content of adult:
 - -Men 21%
 - **-Women 26%**
- If the Fat content of an adult body goes above the normal content the condition is termed as Obesity.

OBESITY IS NOW A GLOBAL EPIDEMIC!

JUNK FOOD & OBESITY INFOGRAPHIC


80% PEOPLE EAT JUNK FOOD ON A DAILY BASIS

360 000 AMERICANS

DIE EACH YEAR FROM DISEASES DIRECTLY RELATED TO OBESITY AND AN UNHEALTHY LIFESTYLE

CHILDREN WALKING TO SCHOOL BY FOOT

OVERWEIGHT BY ETHNICITY/RACE

HISPANICS AND LATINOS

AFRICAN AMERICANS

PACIFIC ISLANDERS

WHITES

ASIANS

46.2%

39.3%

39.3%

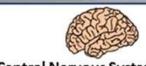
26.9%

26.9%

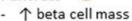
23.1%

CALORIES CONSUMED PER DAY BY ADULTS

MAIN SOURCES OF EMPTY CALORIES



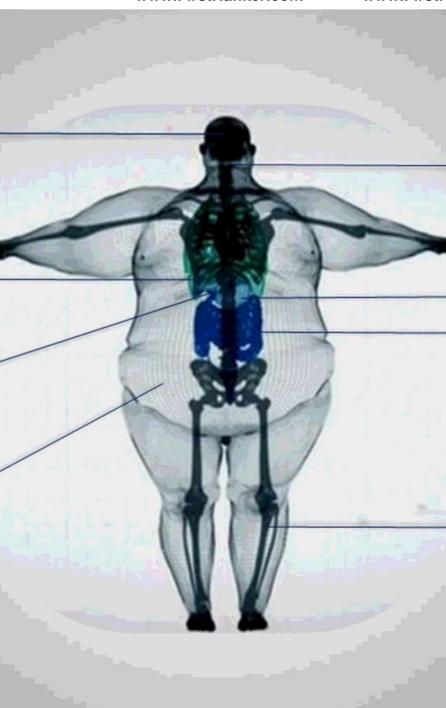
Central Nervous System


- Disturbed brain development
- Leptin-Melanocortin Pathway
- Impaired energy homeostasis
- Neural transmission
- Impaired appetite regulation
- Food preference changes

Liver

- Impaired lipid metabolism
- ↑Inflammation

Pancreas



↑ beta cell function

Adipose Tissue

- ↑ leptin, ↑ or ↓adiponectin
- 1 browning of WAT
- Impaired thermogenesis
- Impaired adipocyte homeostasis
- ↑ insulin resistance
- ↑ inflammation

Taste Receptor

- Impaired fatty acid sensing
- Salivary Glands
- Amylase and carbohydrate metabolism

Stomach

- Lactose digestion

Gut Microbiota

 Disruption in Proportion of Bacteroidetes to Firmicutes population

Musculoskeletal System

- Skeletal growth abnormalities
- Impaired glucose transport in muscles & 个 lipid use in muscles
- ↑ insulin resistance

 Truncal/central obesity is a risk factor for heart attack.

- Obesity has abnormal Lipid metabolism.
- Increased Blood Cholesterol and Lipoproteins.

- Obese persons has high risk of
- Diabetes mellitus
- Atherosclerosis and CVD
- Consequently lead to Metabolic Syndrome

Problems related to obesity:

Prevent Obesity

PREVENT OBESITY

AVOID STRESS

Lorem ipsum dolor sit amet, consectetur adipiscing ellt, sed do eiusmod tempor incididunt ut lobore et dolore magna allqua. Ut enim ad minim veniam, quis nostrud exercitation ultamoc laboris nisi ut aliquip ex ea commodo consequat.

EAT MORE FRUITS AND VEGETABLES

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea

GET ENOUGH SLEEP

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ultamoc laboris nisi ut aliquip ex ea commodo consequat.

GET RID OF BAD HABITS

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea compand

DRINK ENOUGH WATER

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do elusmod tempor incididunt ut lobore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut tabore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ultamoc laboris nisi ut aliquip ex ea commodo consequat.

LESS TV

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud. exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.

Properties Of Triacylglycerol

Lipid Peroxidation (autoxidation)

Lipid Peroxidation Is a source of Higher Free Radicals

- During Oxygen metabolism in body.
- Oxygen derived free radicals (RO.,OH.,ROO.)
 with unpaired electrons are released.
- These Reactive Oxygen Species (ROS), Free radicals interact and oxidize double bonds of PUFAs leads to chain reactions of lipid

- Steps of Lipid peroxidation reaction:
 - -Initiation
 - -Propagation
 - -Termination

- PUFAs are more prone for peroxidation.
- Lipid peroxidation Provide continuous Free radicals.
- Thus has potentially
 devastating effects in the body.

In vitro peroxidation of Lipids deteriorates the quality of Fats and Oils

- Makes the Fat/Oil rancid and in edible.
- Fat/oil has bad taste and odor
- Decreases the shelf life of Fats and Oils.

- In vivo peroxidation of membrane Lipids damages cells & tissues
- Lipid peroxidation has devastating effects on body Lipids.
- Increases risk of Inflammatory diseases
- Ageing
- Cancer

- Antioxidants control and reduces
 In vivo and In vitro Lipid peroxidation.
- Naturally occurring antioxidants are :
 - -Vitamin E
 - -Vitamin C
 - -Beta Carotene

- Body Enzymes as Antioxidants:
 - -Catalase
 - -Glutathione Peroxidase
 - -Superoxide Dismutase
- Other Substances as Antioxidants:
 - -Urate
 - -Bilirubin

Food Additives as Antioxidants:

- -Alpha Naphtol
- —Gallic Acid
- -Butylated Hydroxy Anisole (BHA)
- -Butylated Hydroxy Toluene (BHT)

Preventive Antioxidants:

- Reduces rate of Chain initiation of Lipid peroxidation
 - -Catalase
 - -Peroxidase
 - **—EDTA**
 - -DTPA

- Chain Breaking Antioxidants:
- Interferes the chain propagation of Lipid peroxidation.
 - -Vitamin E
 - -Urate

Rancidity Of Fats/Oils

Rancidity

- Rancidity is a physico chemical phenomenon
- Which deteriorates Fats and Oils
- Resulting in an unpleasant taste ,odor and color of Fat/Oil (Rancid Fat/oil)

Rancid Fat is inedible

Factors Causing Rancidity

- Double bond containing /Unsaturated Fatty acids are unstable and ready for peroxidation and rancidity.
- Single bond containing/Saturated Fatty acids are stable and less peroxidized and made rancid.

PUFAs are more prone to Rancidity Since Double bonds are more susceptible to Lipid peroxidation

Causes Of Rancidity

- Fats and Oils get Rancid on Ageing.
- Various Factors aggravates rancidity of Oils and Fats:
- Improper handling by an exposure to:
 - -Light
 - -Air (Oxygen)
 - -Moisture
 - -Microbes

Types and Mechanism Of Rancidity

Types Of Rancidity

- Oxidative Rancidity
- Hydrolytic Rancidity
- Ketonic Rancidity

Oxidative Rancidity:

- PUFAs having double bonds are easily oxidized to form its peroxides.
- By the action of Oxygen Derived
 Free radicals (ODFR).

 The cellular Lipids are also likely to get peroxidized by Free radical action causing damage to biomembranes.

Hydrolytic Rancidity:

- Long Chain Saturated fatty acids are hydrolyzed by Bacterial Enzymes.
- To produce Dicarboxylic acids,
 Aldehydes, Ketones etc which make a Fat rancid.

Ketonic Rancidity

- It is due to the contamination with certain Fungi such as Asperigillus Niger on Oils such as Coconut oil.
- Ketones, Fatty aldehydes, short chain fatty acids and fatty alcohols are formed.
- Moisture accelerates Ketonic rancidity.

- Rancidity gives bad odor and taste to rancid Fats/oils.
- Due to Dicarboxylic acids
 ,Ketones , Aldehydes Produced
 during the process of

Prevention of Rancidity of Fat/Oil By:

Good storage conditions
Less Exposure to light
Low Oxygen, moisture
No very High temperatures
No Bacteria or fungalcontamination
Addition of Antioxidants

Prevention Of Rancidity

- Rancidity can be prevented by proper handling of oils
- By keeping fats or oils in well closed containers in cold, dark and dry place.

Prevention Of Rancidity

- —Avoid exposure to direct sunlight, moisture and air.
- —Avoid over and repeated heating of oils and fats.

 Removal of catalysts such as Lead and Copper from Fat/Oils that catalyzes rancidity prevents rancidity.

Antioxidants Prevent Rancidity

 Antioxidants are chemical agents which prevent peroxidation and Hydrolysis of Fats/Oils.

Examples Of Antioxidants:

- Tocopherol(Vitamin E)
- Vitamin C
- Propyl Gallate
- Alpha Napthol
- Phenols
- Tannins
- Hydroquinone's.
- Butylated Hydroxy Anisole(BHA)
- Butylated Hydroxy Toluene (BHT)

 The most common natural antioxidant is vitamin E that is important in vitro and in vivo.

- Vegetable oils are associated with high content of natural antioxidants (Vitamin E),
- Hence oils do not undergo rancid rapidly
- As compared to animal fats which are poor in naturally associated antioxidants.

- Rancidity of Fats and Oils is prevented by adding Antioxidants.
- Thus addition of Antioxidants increases shelf life of commercially synthesized Fats and Oils.

Hazards of Rancid Fats:

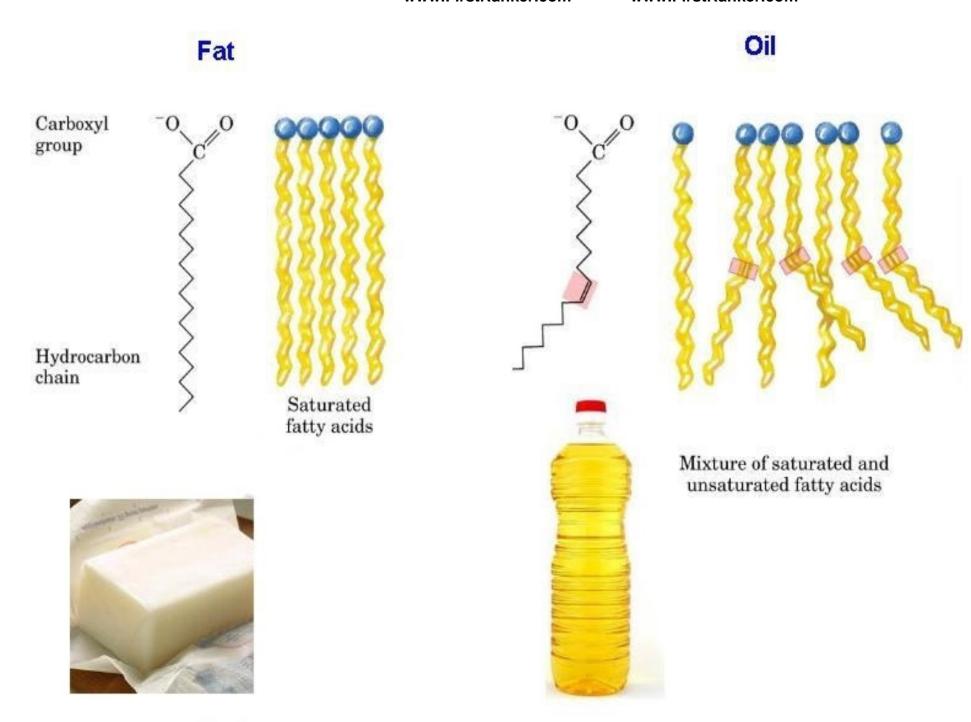
- Rancidity destroys the content of polyunsaturated essential fatty acids.
- 2. Rancidity causes **economical loss** because rancid fat is inedible.
- 3. The products of rancidity are **toxic**, i.e., **causes food poisoning and cancer**.
- 4. Rancidity destroys the fat-soluble vitamins (vitamins A, D, K and E associated with it.

Others Properties Of TAG Depends On Nature Of Fatty Acids

Chain Length Of Fatty acids Of TAG affects Melting Point

- "Hardness" of the Fat/TAG depends on chain length.
 - -< 10 carbons in Fatty Acid = liquid</pre>
 - ->20 carbons in Fatty Acid = solid

Acetic Acid (2 C)	Vinegar	Liquid
Stearic Acid (18 C)	Beef Tallow	Solid
Arachidic Acid (20 C)	Butter	Solid
	www.FirstRanker.com	



Differences In Fat and Oil

- Fat and Oils are different in Physical Characteristics
- Fat is solid at room temperature.
- · Oil is liquid at room temperature.

- TAG of Fat is solid since chemically composed of long and saturated fatty acids.
- Source of Fat is Animal foods.
- TAG of Oil is liquid as composed of short and unsaturated fatty acids.
- Source of Oil is plant.

Hydrogenation Of Fat/Oil

- Treatment of Oils(TAG) rich in PUFAs with Hydrogen gas, (H_{2).}
- Catalyst required (Nickel).
- Adding Hydrogen at double bonds of PUFAs.
- It is also called "Hardening of Oils"
- Hydrogenation converts PUFAs with cis form to trans form.
- Margarine
 - Vanaspati Dalda Crisco, Spry, etc.

Crisco

Advantages and Disadvantages Of Hydrogenation Of Fat /Fatty acids

Advantages Of Fat Hydrogenation

- Hydrogenation transforms unstable ,unsaturated, liquid TAGs:
 - -To stable, saturated, solid TAGs
 - -Reduces risk of Rancidity
 - —Increases shelf life and business.
 - -Example: Vanaspati Dalda, Margarine.

Disadvantages Of Hydrogenation Of Fat/Fatty acids

Trans Fats increases the risk of Atherosclerosis and CVD.

- Hydrogenated trans Fats are more stable.
- Body has no enzyme system to oxidize and metabolize trans fatty acids.

•Remember Hydrogenated Fats are Bad for Health.

- Summary Of Fat Hydrogenation:
- Hydrogen atoms are added to unsaturated Fatty acids
 - Make liquid oils more solid and more saturated.
 - -Create trans fatty acids.
 - -Reduces peroxidation of Fatty acids.
 - Resists rancidity
 - Reduces metabolism
 - -Increases retention
 - -Increase risk of cardiovascular disease.

Note

- Try eat more natural TAGs.
- Avoid Processed Fats.

Tests To Check Purity Of Fat and Oil

- Several laboratory tests are employed to:
 - —Check the purity
 - Degree of adulteration
 - Biological value of Fat and Oils.

Tests to Check Purity of Oils and Fats

Tests To Check Purity of Oils	Importance/Significance
Iodine Number	Index of unsaturation and content of unsaturated fatty acids
Saponification Number	To know Chain Lengths of Fatty acids
Acid Number	Checks purity of Refined oils
Reichert Meissl (RM) Number	Useful in testing the purity of butter

lodine Number

- lodine number is
 Grams/Number of lodine
 absorbed by 100 gram of Fat /Oil .
- Iodine Number is calculated by method of Iodometry.

Use Of Iodine Number

- Iodine number is useful to know
- The index of unsaturation and content of unsaturated fatty acids present in the Fat/Oil.

- lodine number is directly proportional to unsaturated bonds of PUFAs in a Fat/Oil.
- High value of lodine number of oil indicates more content of Unsaturated Fatty acids in it.

Name Of Oils	Iodine Number
Coconut Oil Butter	7-10 (Least) 25-28
Ground Nut Oil	85-100
Sunflower Oil Soya bean Oil	125-145 135-150
Linseed Oil /Flax seed Oil	175-200 (Highest)

- Determination of lodine number helps in knowing the degree of adulteration of tested oil sample.
- If Linseed oil is adulterated with an oil whose content is high in saturated fatty acids will give lower lodine number than the reference values.

Saponification Number

 Saponification number is milligram/number of KOH molecules required to hydrolyze and saponify one gram of Fat/Oil.

- Saponification number gives the idea of molecular size/chain length of Fatty acids present in 1 gram of Fat.
- 1 gram of Fat/oil with long chain fatty acids has lower saponification number.
- 1 gram of oil containing short chain fatty acids has high Saponification number.

- 1 gram Oil with short chain fatty acids has higher saponification number.
- Since it has more COOH groups for KOH reaction.

- 1 gram Fat/Oil with long chain fatty acids has low saponification number.
- Since in 1 gram of Fat has few -COOH groups of fatty acids to react with KOH.

Oils	Saponification Number
Coconut Oil	250-260
Butter	230-250
Jojoba Oil	69-80
Olive Oil	135-142

Acid Number

- Acid number is milligram of KOH required for complete neutralization of free fatty acids present in one gram of Fat/Oil.
- Acid number checks the purity of Refined oils.

- Refined oils are free from free fatty acids and has zero Acid number.
- Increased Acid number of refined oil suggests bacterial/chemical contamination and unsafe for human consumption.

Reichert Meissl (RM)Number

 RM number is 0.1 N KOH required for complete neutralization of soluble volatile fatty acids distilled from 5 gram of Fat.

• R.M Number of Butter is 25-30.

 The R.M number of other edible oils is less than 1.

- R.M number is useful in testing the purity of butter
- Since it contains good concentration of free volatile fatty acids viz: Butyric, Caproic and Caprylic acid.

Adulteration of butter reduces its R.M number.

Differentiation Between Fats And Oils

Fats	Oils
Fats are TAGs composed of Long and Saturated Fatty acid.	Oils are TAGs composed of short and Unsaturated Fatty acids.
Fats solid at room temperature Fat has high melting point	Oils liquid at room temperature Oils have low melting point
Fats -animal In Origin Example: Lard (pork Fat)	Oils -Plant in Origin Example: Safflower Oil
Fats has low antioxidant content and get easily Rancid	Oils have high antioxidant content and do not get easily Rancid
Fats are more stable Fats are less metabolizable in body.	Oils are less stable Oils are readily metabolizable in the body.
High content of dietary Fats has high risk for Atherosclerosis.	Oils have low risk for Atherosclerosis.

Study Of Compound Lipids

Compound Lipids

- Compound lipids are class of Lipids
- Chemically Esters of Fatty acids with Alcohols attached with Additional groups.

- Additional Groups in Compound Lipids may be either of these:
 - —Phosphoric acid
 - -Nitrogenous Base
 - -Carbohydrate moieties
 - —Proteins
 - -Sulfate groups
 www.FirstRanker.com

3 Main Compound Lipids

- Phospholipids
- Glycolipids
- Lipoproteins

Phospholipids

HYDROPHILIC

Phospholipids

Compound Lipids

- Components:
 - Alcohol- Glycerol/Sphingol
 - Fatty Acids- PUFAs and SFAs

- Phospholipids (PL) Chemically Possess:
 - —Fatty acids esterified to Alcohol and
 - —Phosphoric acid attached with Nitrogenous /non nitrogenous base.

Types Of Phospholipds

Based upon Alcohol Present in Phospholipid structure

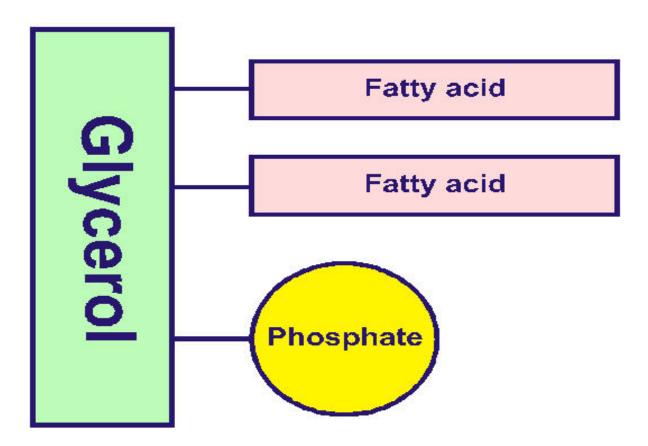
Two Types of Phospholipids are:

-Glycerophospholipids:

Glycerol containing Phospholipids

-Sphingophospholipids:

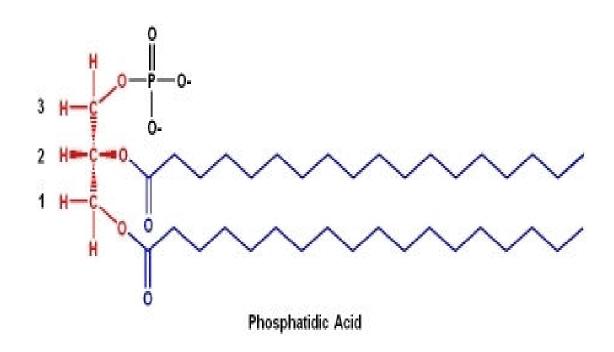
Sphingosine/ Sphingol containing Phospholipids.



Glycerophospholipids/ Glycerophosphatides

Names & Structures OF 7 Glycerophospholipids

Simplest Glycerophospholipid PHOSPHATIDIC ACID



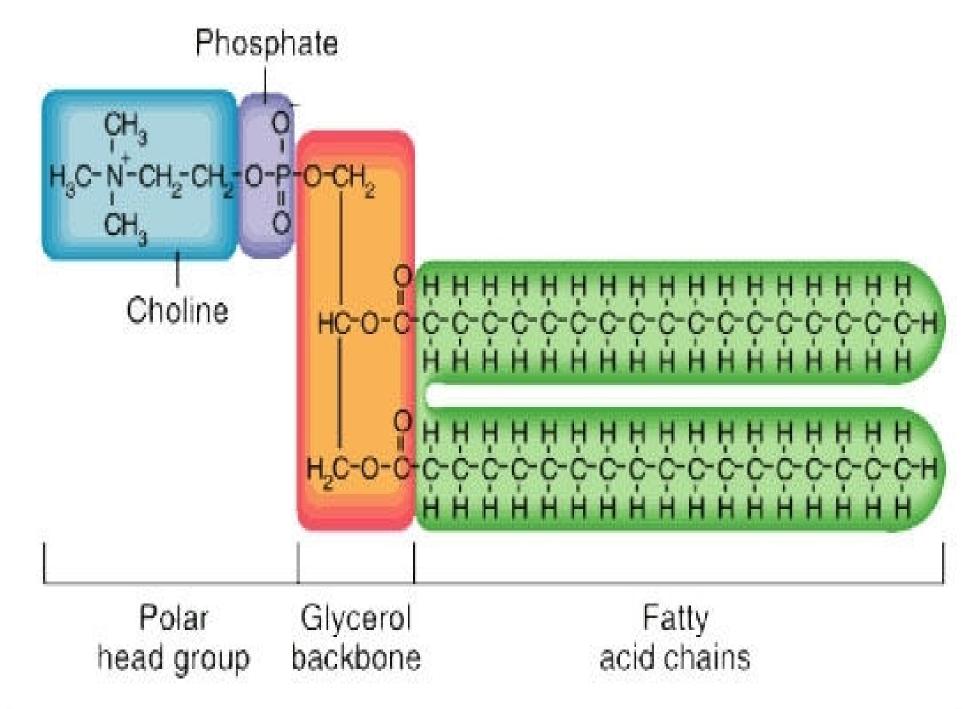
 Depending upon Nitrogenous and Non Nitrogenous moiety attached.

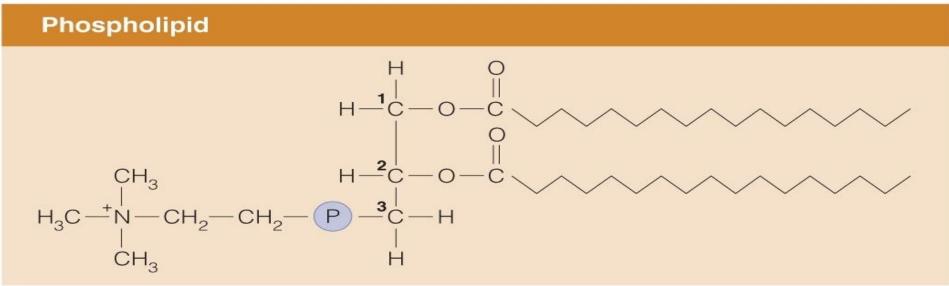
- Examples of 7 Glycerophospholipids are:
 - 1. Phosphatidic Acid (Simplest PL)
 - 2. Phosphatidyl Choline (Lecithin)
 - 3. Phosphatidyl Ethanolamine (Cephalin)
 - 4. Phosphatidyl Serine (Cephalin)
 - 5. Phosphatidyl Inositol/ Lipositol
 - 6. Phospatidal Ethanolamine/ Plasmalogen
 - 7. DiPhosphatidyl @hyteling Cardiolipin

Phosphatidic Acid

Phosphatidic Acid

- Phosphatidic acid is a simplest Glycerophospholipid.
- Phosphatidic acid has Glycerol esterified with two Fatty acids at C1 and C2.
- C3 is esterified with Phosphoric acid.




Phosphatidic acid serve as a precursor for biosynthesis of other Glycerophospholipids

- Either by linking of
 - -Nitrogenous or
 - –Non nitrogenous base


Phosphatidyl Choline/Lecithin

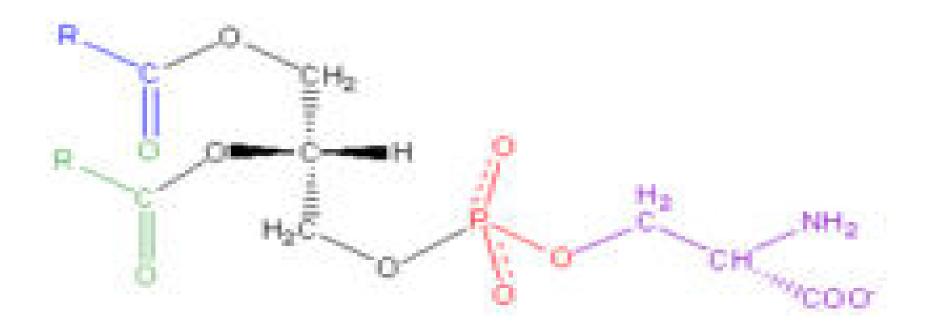
(a)

 Phosphatidyl Choline (Lecithin) is most commonest and abundant Glycerophospholipid in body.

- Phosphatidyl Choline is commonly called as Lecithin.
- Derived from word 'Lecithos' meaning Egg Yolk.
- Phosphatidic acid is linked to a Nitrogenous base Choline to form Phosphatidyl Choline.

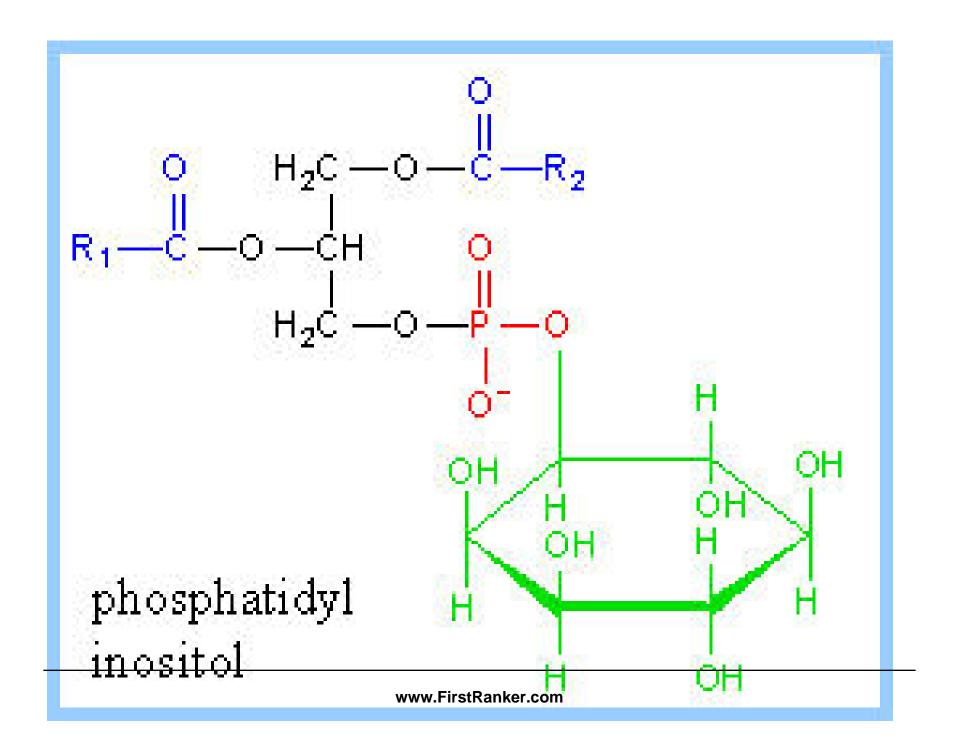
Cephalins

- -Type of Glycerophospholipids
- Nitrogen base is Ethanolamine or Serine.
- –Phosphatidylethanolamine and Phosphatidylserine are Cephalins.

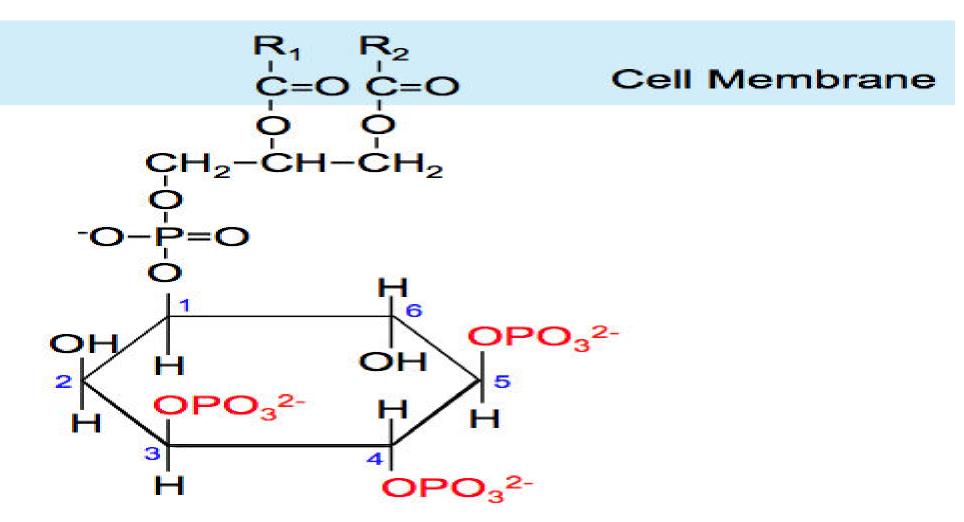

Phosphatidyl Ethanolamine

Phosphatidylethanolamine

Phosphatidyl Serine



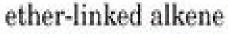
 An Amino acid Serine linked to Phosphatidic acid forms Phosphatidyl Serine.

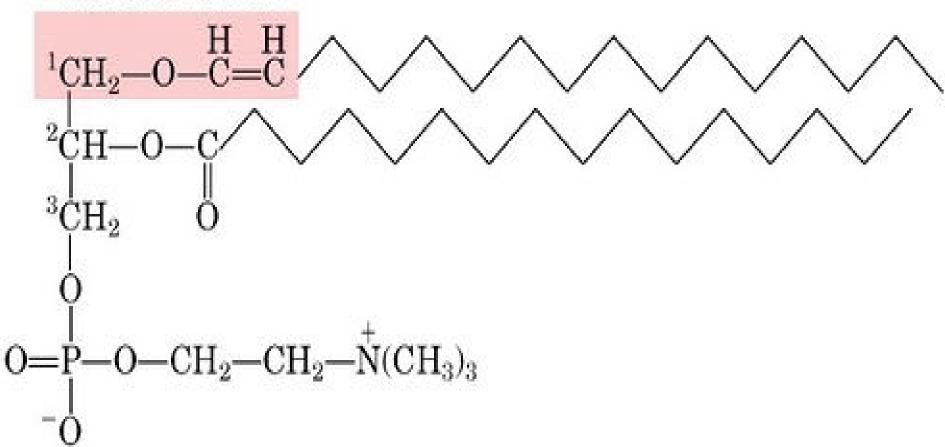


Phosphatidyl Inositol/ Lipositol

Phosphatidyl Inositol Tri Phosphate (PIP3)

- Inositol/Myo Inositol a Polyol derived from Glucose
- Non Nitrogenous,
 Carbohydrate Derivative.
- Inositol linked to Phosphatidic acid forms Phosphatidylinositol.

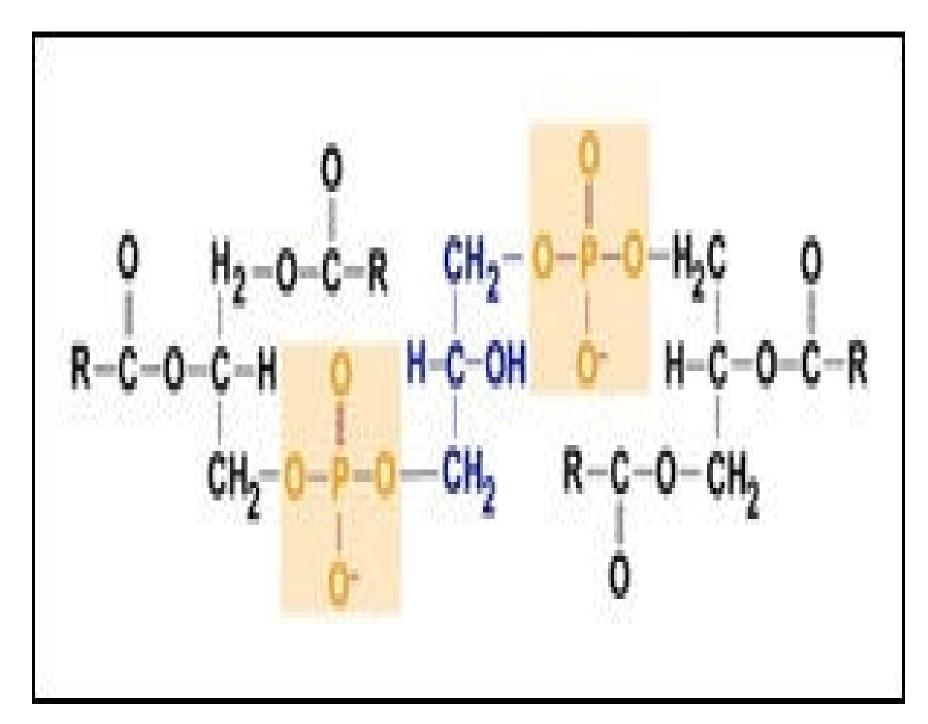



Phospahatidyl Inositol 3,4,5 Tri
 Phosphate (PIP3) in presence of enzyme Phospholipase C

 Generates Diacyl Glycerol and Inositol Tri Phosphate.

Phosphatidalethanolamine/ Plasmalogen

Plasmalogen


- Plasmalogen possess an Ether linkage at C1.
- Fatty acid is linked to C1 of Glycerol, by an Vinyl(CH=CH2) Ether (C-O-C)linkage instead of usual Ester bond.
- Nitrogen base linked are **Ethanolamine/Choline.**

Diphosphatidylglycerol/ Cardiolipin

Di Phosphatidyl Glycerol

 Cardiolipin was first isolated from Cardiac Muscles of Calf and hence the name derived.

Diphosphatidylglycerol/Cardiolipin is chemically composed of

Two molecules of Phosphatidic acid linked to one Glycerol.

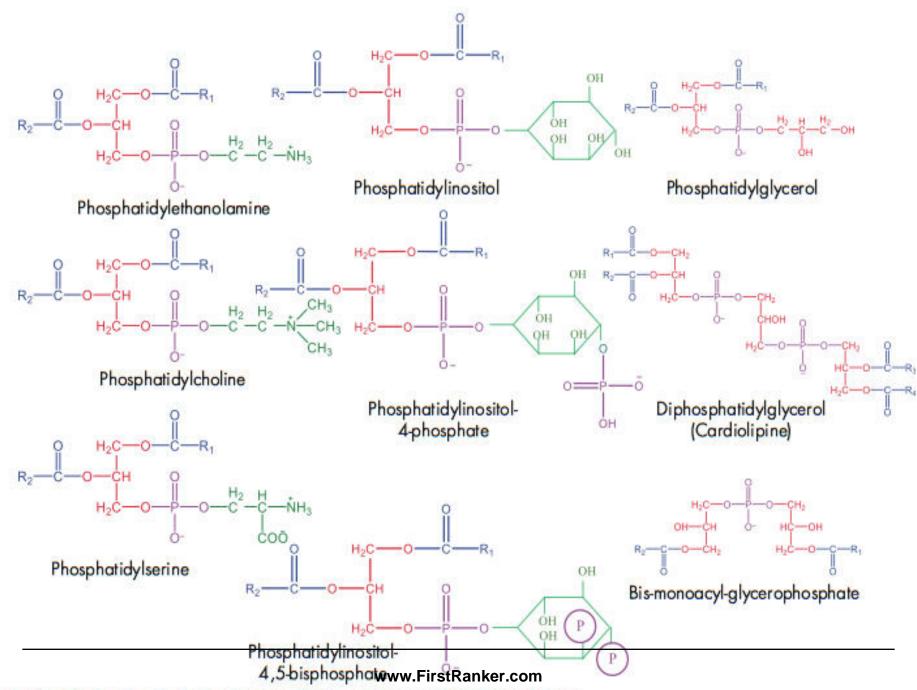
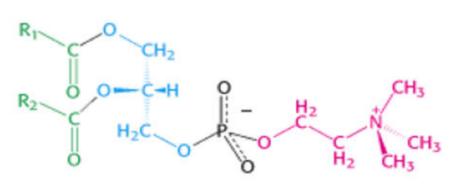
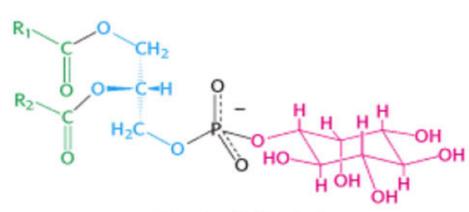
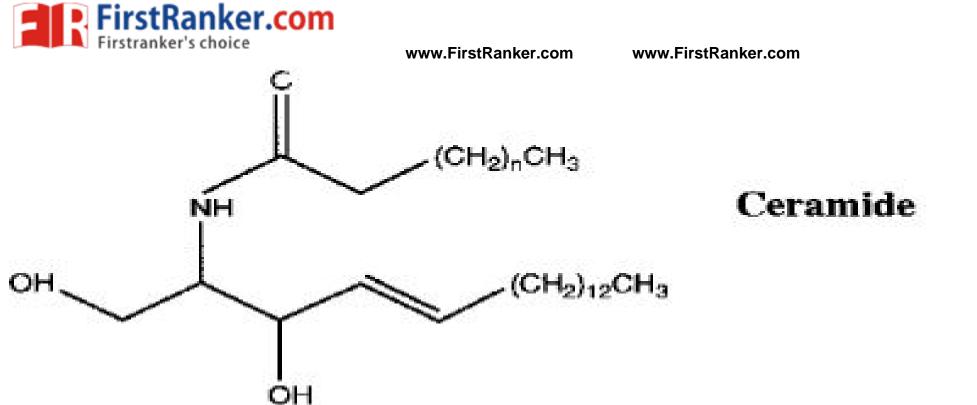



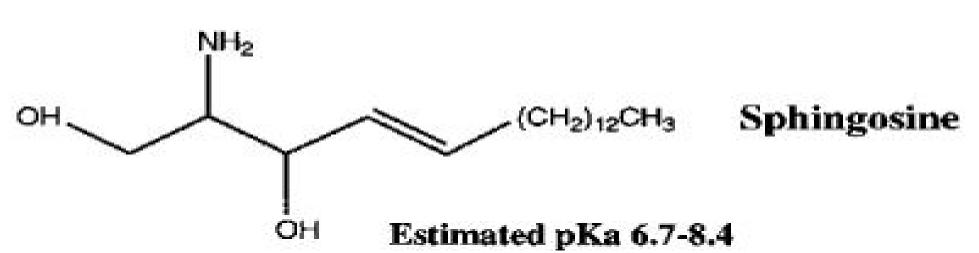
Figure 3 Different classes of glycerophospholipids according to their polar head group.



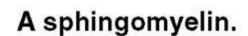
Phosphatidyl serine

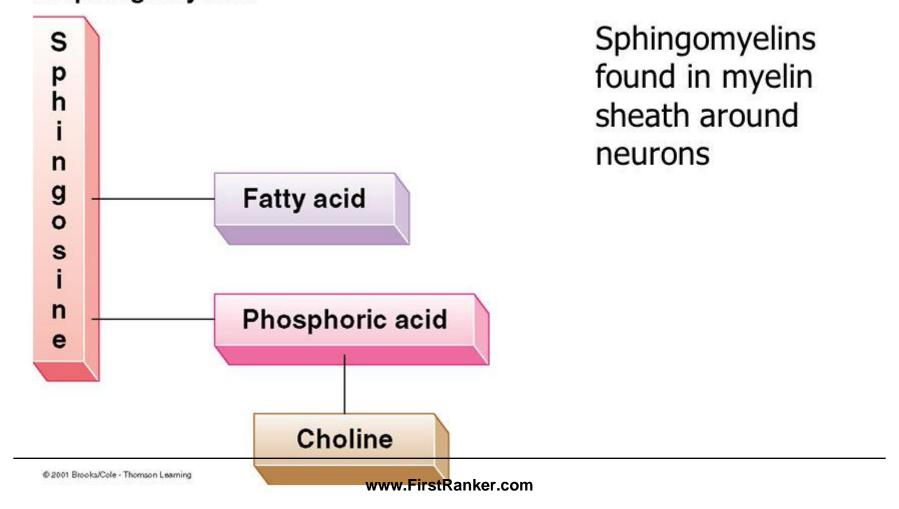
Phosphatidyl choline

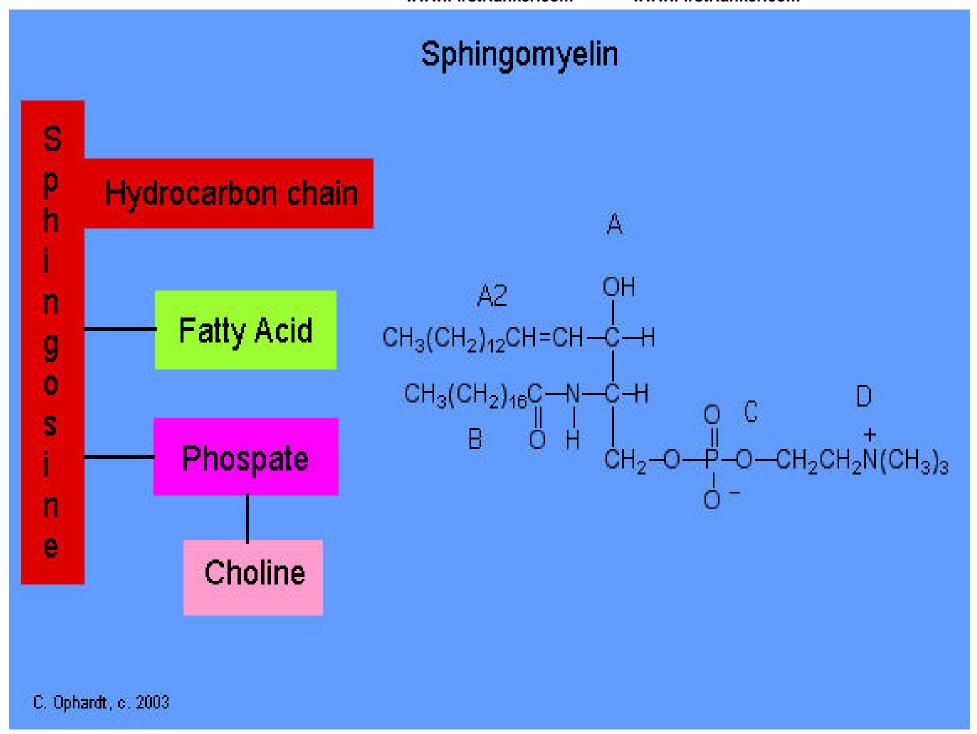

Phosphatidyl ethanolamine



Phosphatidyl inositol


Diphosphatidyl glycerol (cardiolipin)


SphingoPhospholipids/ Sphingophosphatides

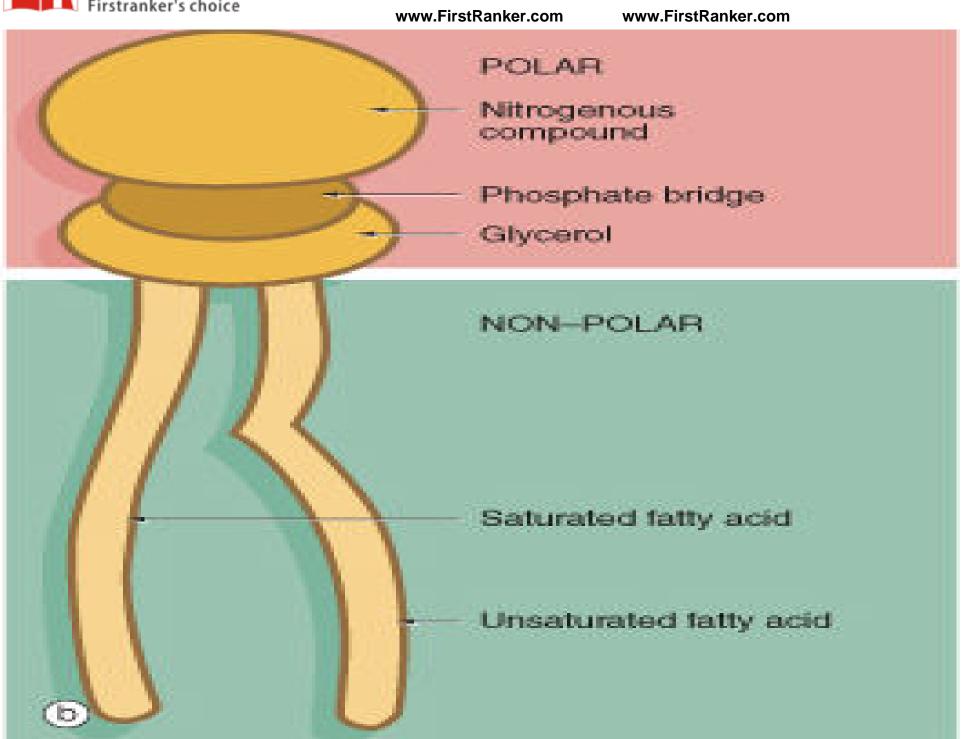


Sphingomyelin: sphingosine, fatty acid, phosphate and choline

 Sphingomyelin is an example of Sphingophospholipid.

Sphingophospholipid is Sphingosine based Lipid

 Which has Sphingosine linked with Fatty acid-Phosphate and Choline.


- Sphingosine is linked with a Fatty acid by an amide linkage to form Ceramide.
- Ceramide is then linked to Phosphoric acid and Choline to form Sphingomyelin.

Properties Of Phospholipids

Amphipathic Nature Of PL

- Phospholipds are Amphipathic/ Amphiphillic in nature.
- Since the structure of PL possess
 both polar and nonpolar groups.

- Hydrophilic/Polar groups of Phospholipids:
 - —Phosphoric acid
 - -Nitrogenous groups
- Hydrophobic/non polar groups of Phospholipids :
 - -Fatty acid/Acyl chains

Exogenous And Endogenous Sources Of Phospholipids

Phospholipids in Foods

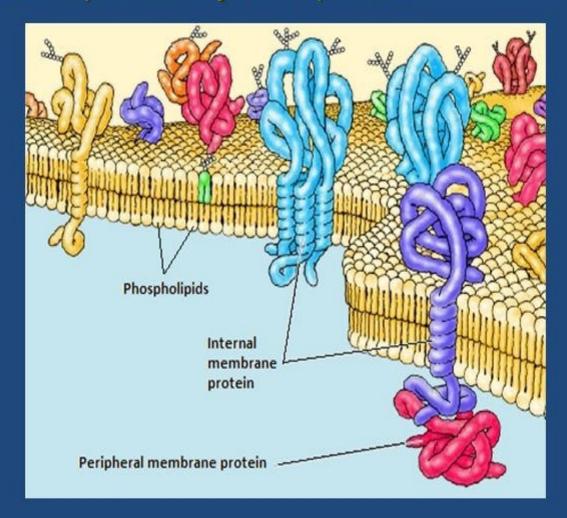
Lecithin (phosphatidylcholine)

Major phospholipid

Found in:

- Liver
- Eggs
- Soybeans
- Peanuts
- Wheat germ

Liver produces lecithin as well.


Occurrence And Distribution Of Phospholipids

- Various types of Phospholipids
 Associated to all over body cells.
- Most predominantly associated to Biomembranes
- Myelin Sheath
- Alveoli in Lungs

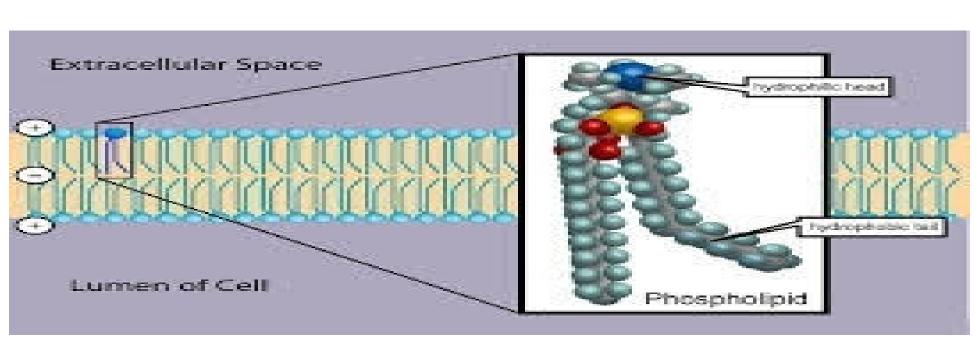
13. Where are phospholipids found in the body?

Phospholipids are found in cellular membranes, of which they are a major component.

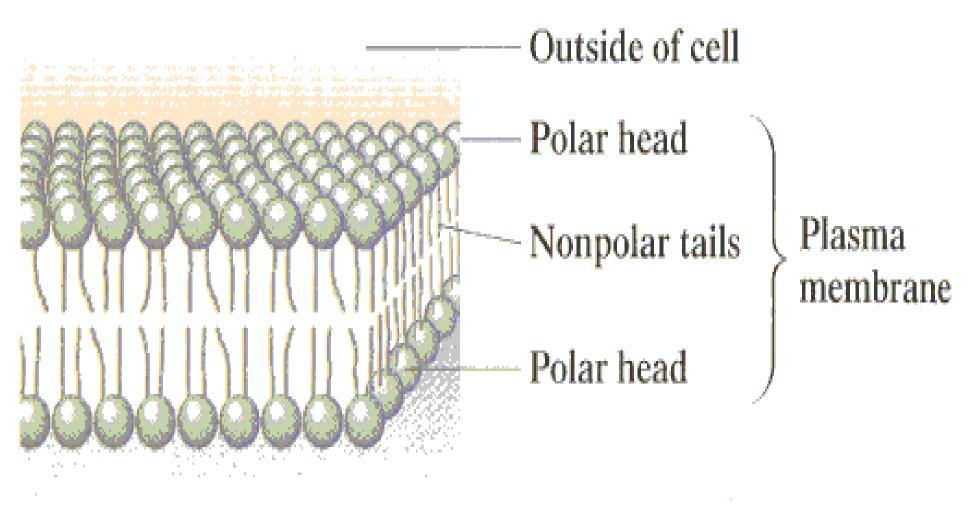
Functions Of Phospholipids (PL)

- 1. Biomembrane Components
- 2. Lung Surfactant
- 3. Lipid Digestion and Absorption
- 4. LCAT activity for Cholesterol Esterification and Excretion
- 5. Lipotropic Factor
- 6. Clotting Mechanism
- 7. Cardiolipin role
- 8. Coenzyme Role
- 9. Choline from Lecithin Methyl Donor
- 10. Detoxification role of Lecithin
- 11. Eicosanoids biosynthesis
- 12. Nerve Impulse Conduction
- 13. Second Messenger of Hormone Regulation

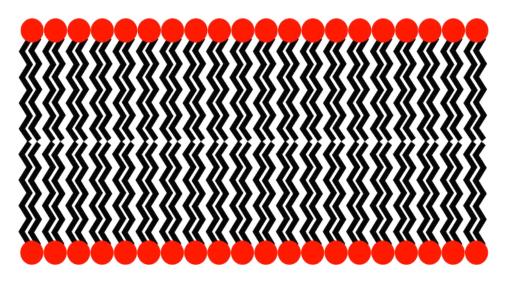
Functions of Phospholipids


☐Components of cell membrane, mitochondrial membrane and
lipoproteins
☐Participate in lipid absorption and transportation from intestine
☐Play important role in blood coagulation
Required for enzyme action- especially in mitochondrial electron
transport chain
□Choline acts as a lipotropic agent
☐Membrane phospholipids acts as source of Arachidonic acid
☐Act as reservoir of second messenger- Phosphatidyl Inositol
☐Act as cofactor for the activity of Lipoprotein lipase
☐Phospholipids of myelin sheath provide insulation around the nerve
fibers
☐Dipalmitoyl lecithin acts as a surfactant

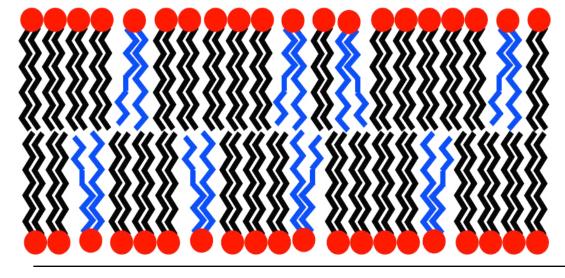
Glycerophospholipid Functions

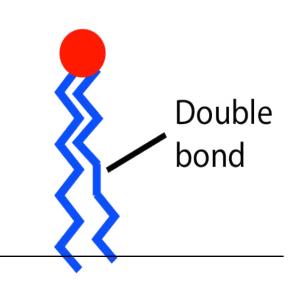

Lecithin Is Most Functional Phospholipid

1. Phospholipids Components Of Biomembranes



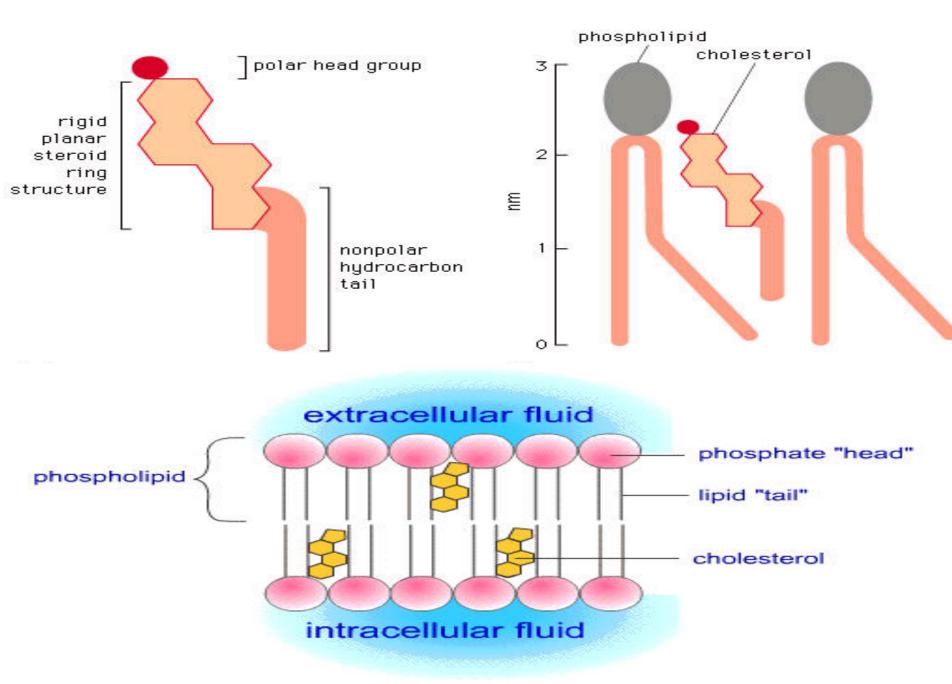
Phospholipid Bilayer of Plasma membrane

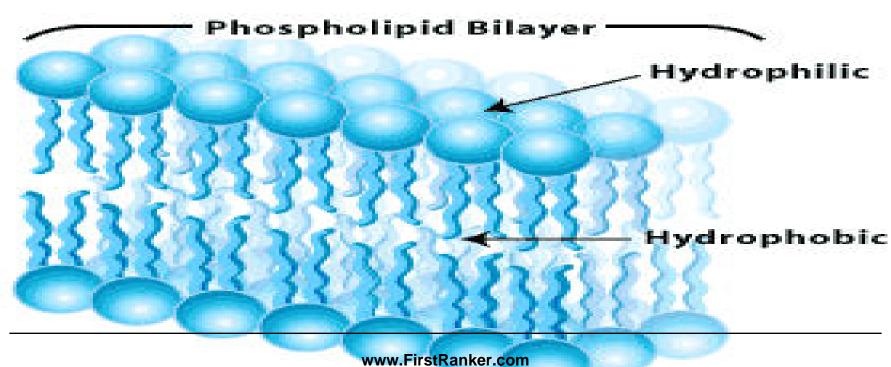



Saturated lipids only

Saturated

Mixed saturated and unsaturated Ranker.com


Monounsaturated



Cholesterol intercalates among Phospholipids.

Cholesterol fills in the spaces left by the kinks of PUFAs .

Cholesterol stiffens the bilayer and makes membrane less fluid and less permeable.

Role Of Lecithin

- The Glycerophospholipid Lecithin is the major structural components of biomembranes.
- An Amphipathic phospholipid bilayer has polar head groups of PL directed outwards.

- Membrane Phospholipid bilayer ,constituent of cell membranes imparts:
 - -Membrane Structural Integrity
 - -Membrane Fluidity
 - -Membrane Flexibility
 - -Selective Permeability

- Phospholipids may have fatty acids which are saturated or unsaturated.
- This affects the properties of the resulting bilayer/cell membrane:
 - –Most membranes have phospholipids derived from unsaturated fatty acids.
 - -Unsaturated fatty acids add fluidity to a bilayer since 'kinked' tails do not pack tightly together.

- Phospholipids (PL) derived from unsaturated phospholipids allow faster transport of nonpolar substances across the bilayer.
- Polar substances are restricted to cross the membrane.
- -PL bilayer in membranes protect the cell from an entry of polar reactive and interfering substances and serve as security guards of cells.

- Membranes of Nerve cells, which are stiffer contain a much higher percentage of phospholipids derived from saturated fatty acids.
- They also contain high levels of Cholesterol which stiffens membrane structure.

2. Phospholipid As Lung Surfactant

Pulmonary surfactant composition

80% phospholipids

- Dipalmitoylphosphatidylcholine DPPC (60%)
- Phosphatidyl glycerol / ethanolamine / inositol (20%)

10% neutral lipids

Mostly cholesterol

10% Surfactant proteins

- SP-A, SP-D: hydrophilic
- SP-B, SP-C: hydrophobic

- DiPalmitoyl Phosphatidyl Choline serve as an Lung surfactant.
- It Lowers surface tension and keeps Alveoli of lungs blown. (prevent adherence of alveoli)
- Enables effective exchange of gases (Oxygen) in Lungs.

- After expiration of air the alveoli gets deflated.
- The lung surfactant reduces the surface tension and allow the alveolar walls to reinflate.

Pulmonary Surfactant

- Surfactant contains phospholipids, proteins and glycosaminoglycans, reduces the surface tension and prevents collapse of the alveolus during expiration.
- The reduced surface tension in the alveoli decreases the force that is needed to inflate alveoli during inspiration.
- Therefore surfactant stabilizes the alveolar diameters, facilitates their expansion and prevents their collapse by minimizing the collapsing forces.
- Surfactant also has bactericidal properties

Functions of Surfactant

Lowers surface tension of alveoli & lung

- I. Increases compliance of lung
- 2. Reduces work of breathing

2. Promotes stability of alveoli

- 300 million tiny alveoli have tendency to collapse
- Surfactant reduces forces causing atelectasis
- Assists lung parenchyma 'interdependant' support

During inflation, the alveolus has expanded from a radius of 100 µm Inspiration to one of 150 µm, greatly reducing the surface density of the surfactant. Thus, surface tension and elastic recoil rise. putting a "brake" on Surfactant Rapidly expanding alveolus expanding alveolus Because the radius of this alveolus has expanded from 100 μm to only 120 μm, its surfactant is less diluted, putting less of a "brake" on

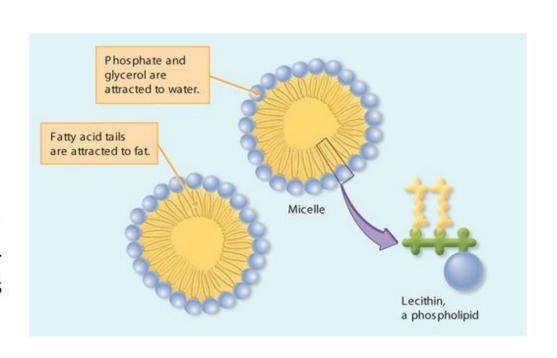
3. Prevents transudation of fluid into alveoli

- 1. Reduces surface hydrostatic pressure effects
- 2. Prevents surface tension forces from drawing fluid into alveoli from capillary; LaPlace

Expansion of lungs at birth

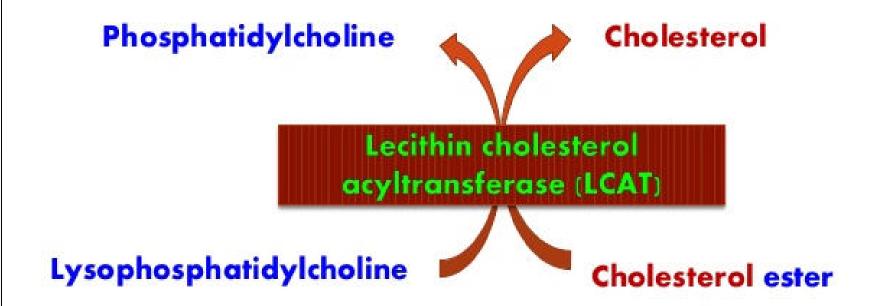
Phospholipid as Lung surfactant

 Prevent body to suffer from Respiratory Distress Syndrome (RDS).


3.Phospholipids Help In Digestion And Absorption Of Dietary Lipids

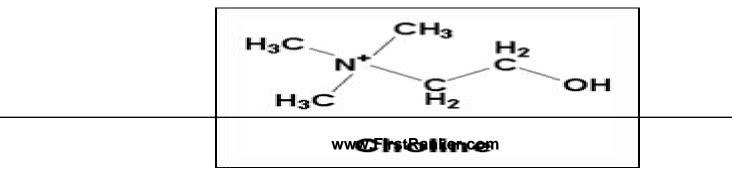
- Phospholipids being amphipathic in nature act as good emulsifying agents.
- Along with Bile Salts they help in digestion and absorption of non polar dietary Lipids.

Phospholipids


- Emulsifiers (<u>Lecithin</u>)
 - In body
 - Phospholipid with choline > phosphotidylcholine
 - In food
 - Blend of phospholipids with different nitrogencontaining components
 - Used as emulsifiers
 (e.g. salad dressing,
 chili, sloppy-joe mixes,
 and chewing gum).

4.Phospholipid Lecithin Helps In Cholesterol Excretion

Reaction catalyzed by LCAT



Lecithin helps in Cholesterol
 Esterification by LCAT activity.

Cholesterol Ester is later
 dissolved in Bile and further
 excreted it out.

- Lecithin serve as a storage depot of Choline.
- Choline is a store of labile Methyl groups
- Hence Choline participate in Transmethylation reactions.

- Choline is used for generation of neurotransmitter 'Acetyl Choline" which helps in nerve impulse transmission.
- Choline serve as Lipotropic factor
 hence helps in Lipoprotein formation in
 Liver to mobilize out Lipids and prevent
 from Fatty Liver.

6. Phospholipids Releases Arachidonic Acid For Eicosanoid Biosynthesis

Lecithin at 2nd carbon has Arachidonic acid (PUFA).

 It donates Arachidonic acid which is a precursor for Eicosanoid biosynthesis.

 Phosphatidyl Inositol also provides Arachidonic acid for Eicosanoids biosynthesis.

 Lecithin helps CYT450 system for drug detoxification.

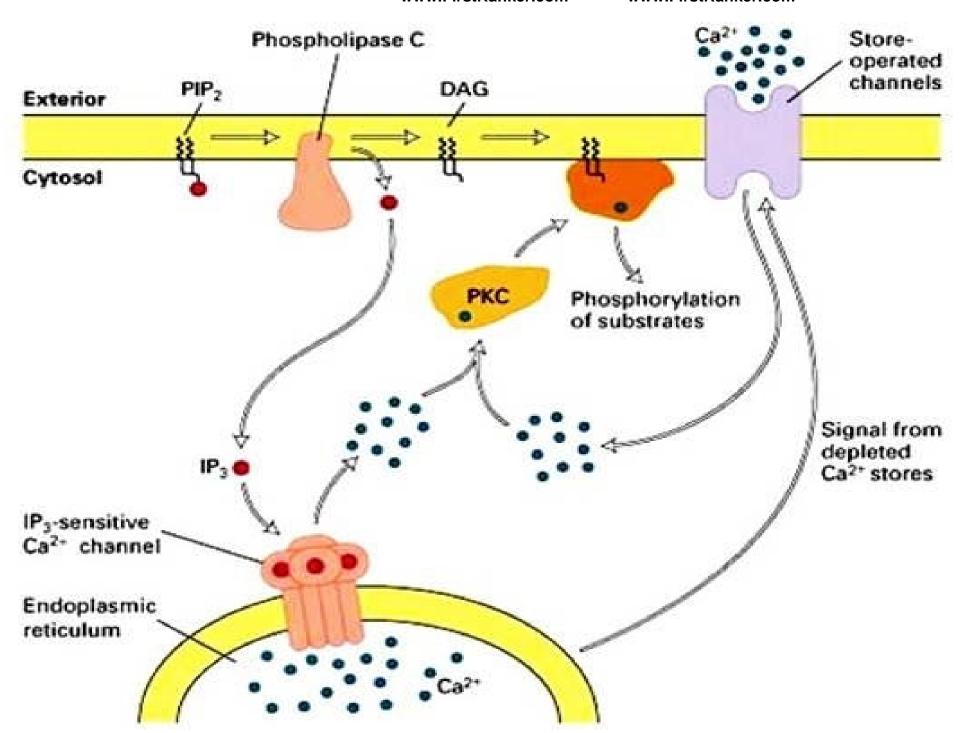
8. Phospholipids Has Role In Blood Coagulation

Role Of Cephalin

 Phosphatidyl Ethanolamine has role in blood coagulation.

It converts clotting factor
 Prothrombin to Thrombin by factor X.

 Phosphatidyl Serine has role in Apoptosis (Programmed Cell death).



10.Role Of Phospholipids In Hormonal Action

Mediates Cell Signal Transduction

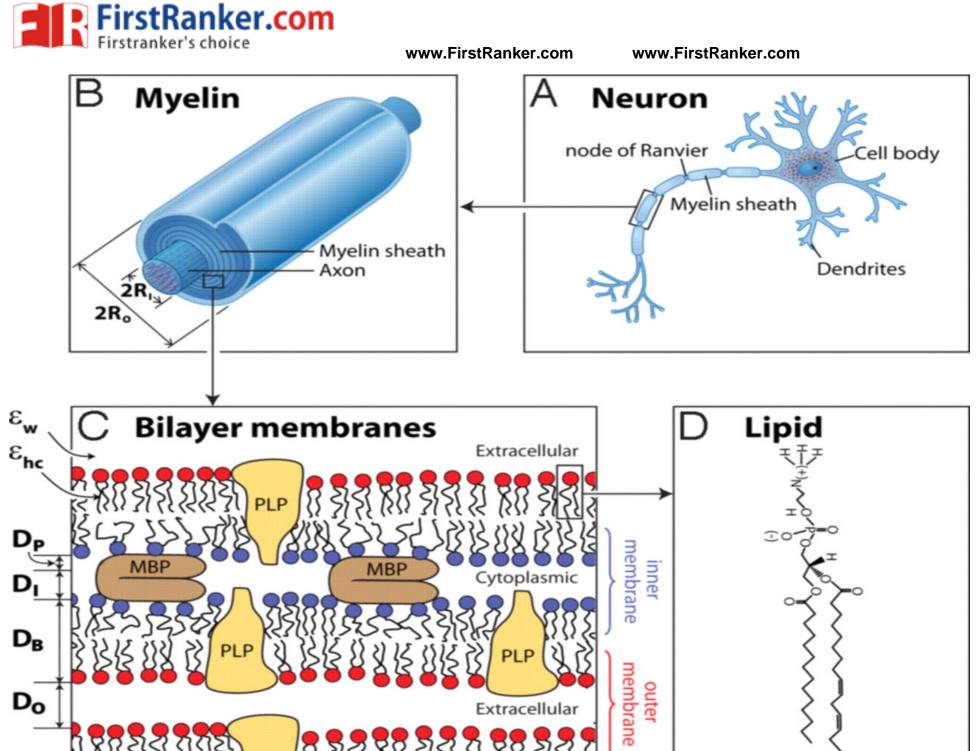
- Role Of Phosphatidylinositol
- Phosphatidyl Inositol
 Triphosphate (PIP3) is a constituent of cell membrane
- It mediate hormone action /cell signal transduction and maintain intracellular Calcium.

- Inositol tri phosphate and Diacylglcerol are released from PIP3 by membrane bound Phospholipase C
- The Inositol triphosphate and DAG serve as second messenger to hormones
 Oxytocin and Vasopressin.

Plasmalogen associated to brain and muscles helps in Neural functions.

- Role Of Cardiolipin
- Cardiolipin is rich in inner mitochondrial membrane and supports Electron Transport
 Chain and cellular respiration.

Cardiolipin exhibits

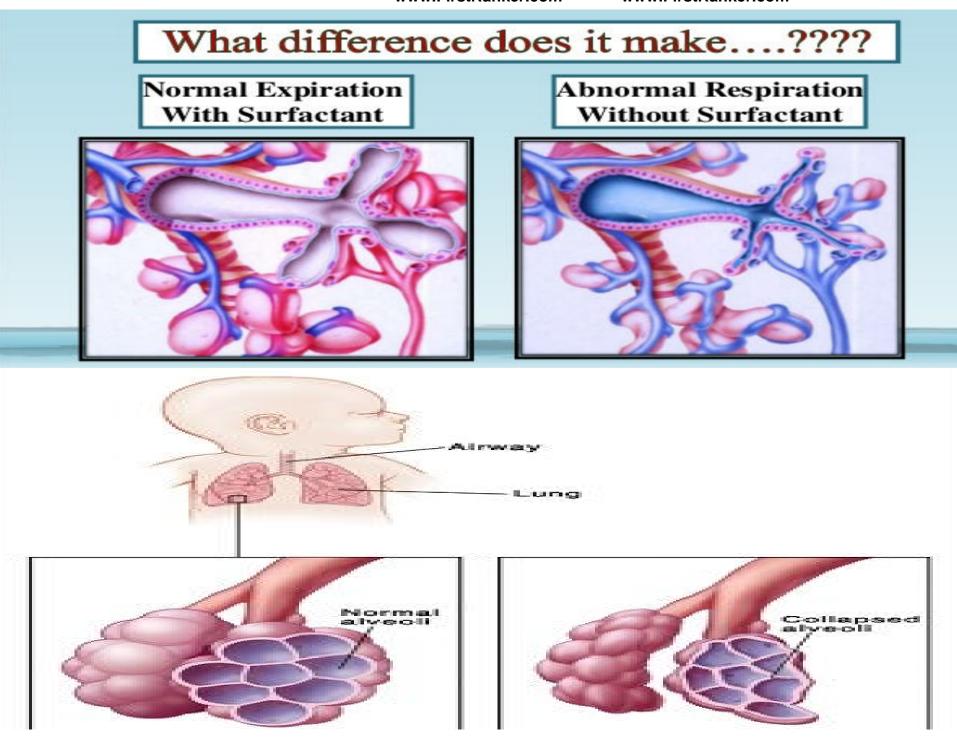

 antigenic properties and used in VDRL serological
 tests for diagnosis Syphilis.

- Phospholipid serve as Coenzyme for certain Enzymes :
 - -Lipoprotein Lipase
 - -Cytochrome Oxidase

Functions OF Sphingophospholipids

- Sphingomyelins are rich in Myelin sheaths which surrounds and insulate the axons of neurons.
- Sphingomyelin helps in nerve impulse transmission.

Disorders Related To Phospholipids



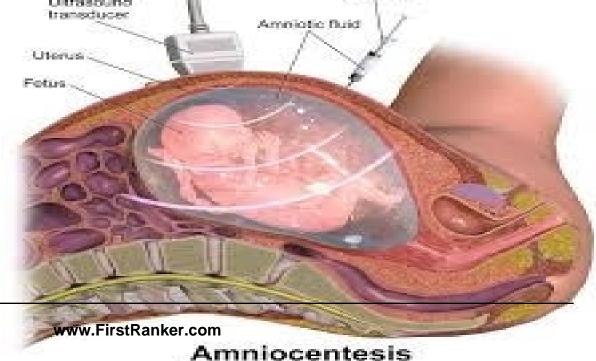
Respiratory Distress Syndrome (RDS)

- Suffered by premature born infants.
- Caused due to deficiency of Lung surfactant DiPalmitoyl Phosphatidyl Choline.

- Since Lung is last organ to mature.
- Premature babies has insufficient lung surfactant lining in the alveoli walls.
- Which supports no normal respiration.
- Has respiration difficulties due to alveolar collapse.

Signs And Symptoms Of RDS

- Low ATP production
- Weakness ,Lethargy
- Low Cellular Functions
- Poor Coordination


Lecithin/Sphingomyelin (L/S) Ratio of Amniotic Fluid

Assessment Of Fetal Lung Maturity And

Diagnostic Criteria For RDS

 Lecithin /Sphingomyelin (L/S) ratio of amniotic fluid, collected by Amniocentesis is a good indicator to evaluate fetal lung

maturity.

- Prior to 34 weeks of gestation the concentration of Lecithin and Sphingomyelin in amniotic fluid is equal.
- In Later weeks of gestation the Lecithin levels are markedly increased.

- At full term L/S ratio is > 2/>5
- In pre term infants L/S ratio is 1.5 or < 1 results to suffer from RDS.

OTHER RDS Sufferers Individual with Lung Damage and Dysfunctions

- Old aged Persons
- Smokers
- Severely Infected Lungs
- Lungs toxicated and damaged by chemicals

- Old age persons and Adults with Lung damage
 (Due to Smoking/Infections)
- Who unable to biosynthesize the lung surfactant may also exhibit RDS.

Lecithin-Sphingomyelin (L/S) Ratio

- Considered the reference method
- Lecithin is the primary component of the lung surfactants; increased production occurs after the 35th week
- Sphingomyelin is produced at a constant rate after the 26th week and serves as a control for the rise in lecithin
- L/S ratio is 1.6 prior to week 35 and rises to 2.0 or greater for alveolar stability after week 35
- Therefore, preterm delivery is considered safe with an L/S ratio of 2.0 or higher
- · Test is performed using thin-layer chromatography
- Many laboratories have replaced the L/S ratio with the quantitative phosphatidyl glycerol immunoassays and lamellar body density procedures

Copyright © 2014. F.A. Davis Company

Management of RDS:

A) General:

- * Basic support including thermal regulation and parentral nutrition and medications (antibiotics).
- * Oxygen administration, preferably heated and humidified

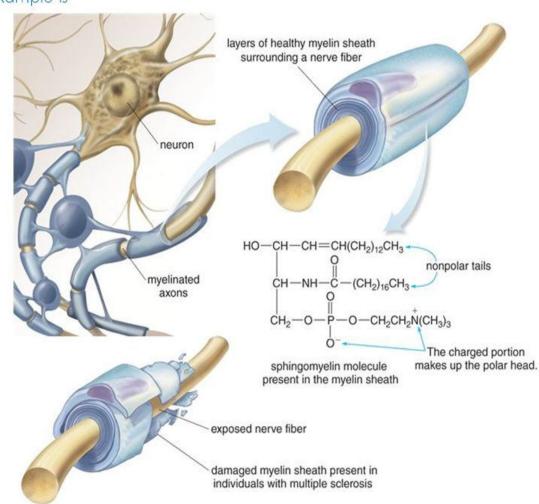
B) Specific:

Surfactant replacement therapy through ET tube.

Prevent And Manage RDS

- Pregnant Women Diet for biosynthesis of L and S
- Pregnant Women Activities and Positions
- Prevent Damaging Environment Exposures

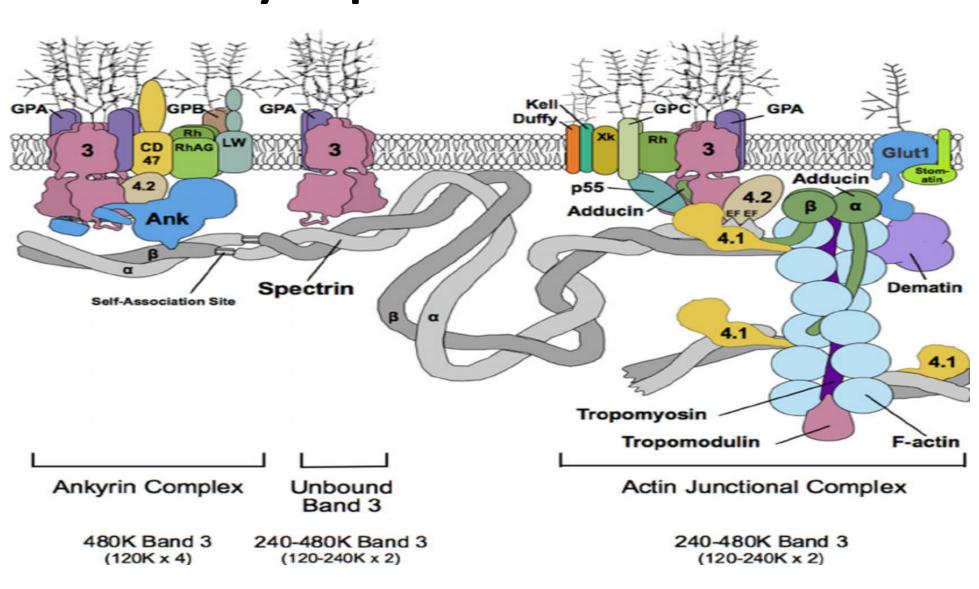
Membrane Related Disorders Due To Defective Phospholipds

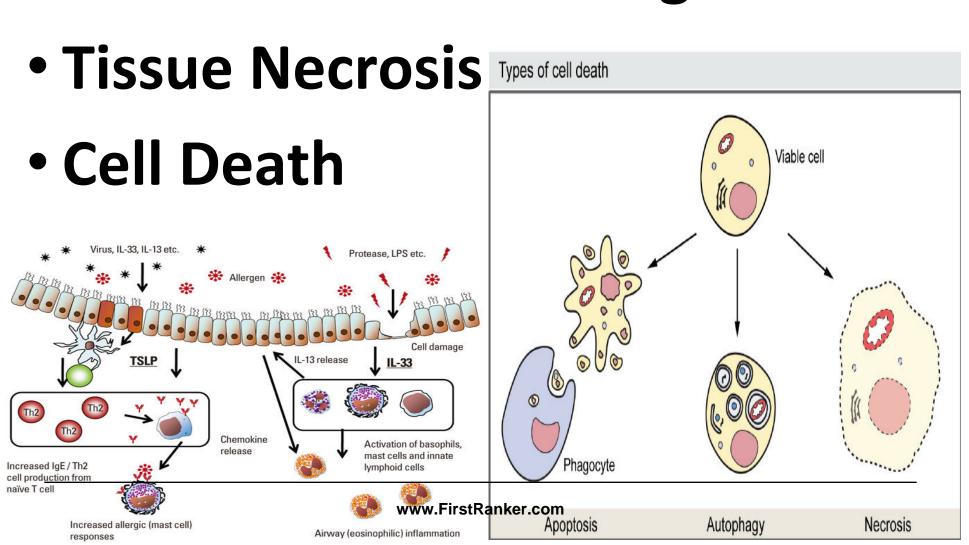

Multiple Sclerosis Due to Defect In Sphingomyelins and Myelin Sheaths

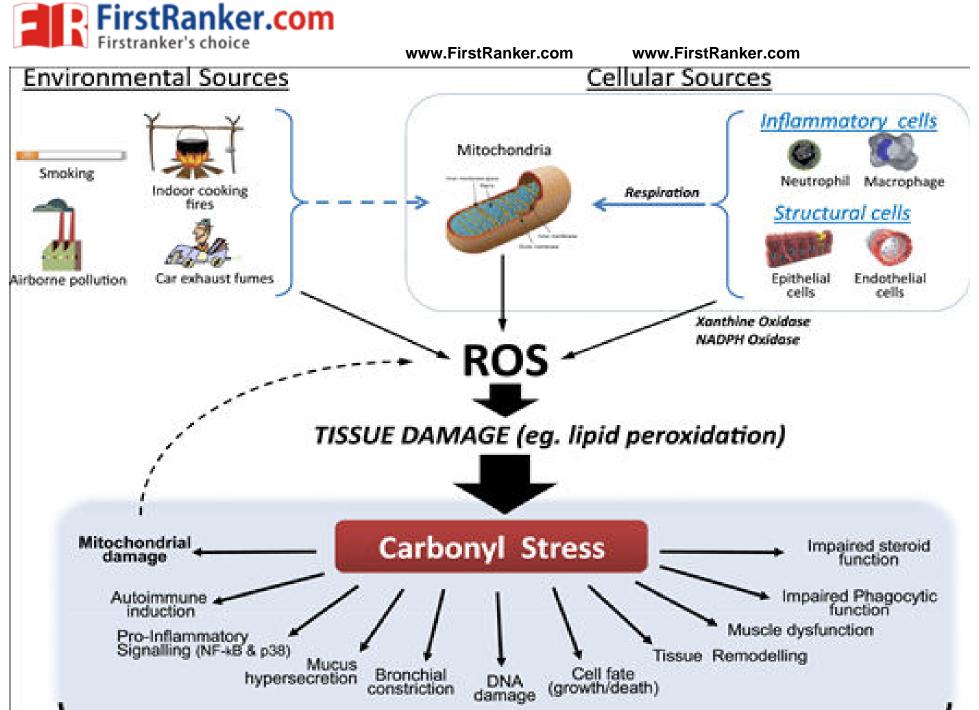
Further modifications to the hydroxyl group, leads to a variety of other sphingolipids. One important example is

sphingomyelin.

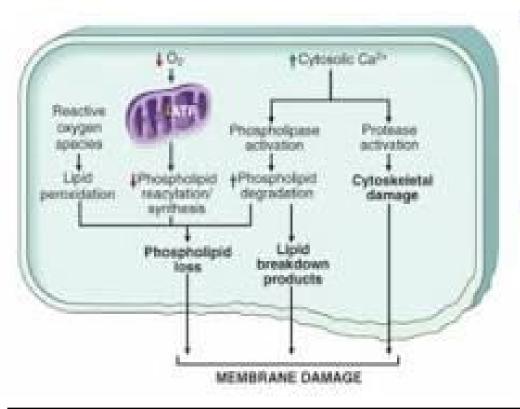
The coating that surrounds and insulates nerve cells, the **myelin sheath**, is particularly rich in sphingomyelins, and is vital for proper nerve function. Deterioration of the myelin sheath, as seen in multiple sclerosis, leads to disabling neurological disorders.


Multiple sclerosis (MS) is a degenerative disease characterized by scarring of the myelin sheath, the insulating layer that surrounds a nerve fiber. Without the protective myelin sheath, normal nerve transmission is disrupted and a variety of effects—numbness, blindness, speech disorders, and tremors—can result.


Defect In Sphingomyelins May Affect Nerve Impulse Conduction



Membrane Carbs, Lipids and Proteins Structurally Important For Functional Role

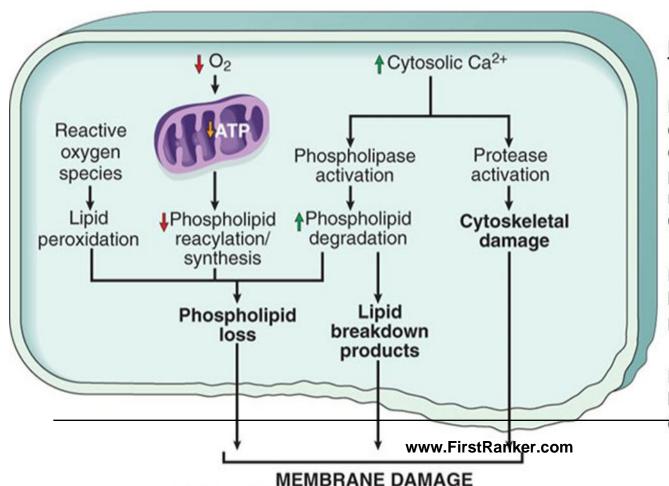

- Deranged Cellular Environment
- Cell membrane Damage

Defects in Membrane Permeability

COPD

- The plasma membrane can be damaged by:
 - · luchemia.
 - various microbal toxes,
 - lysic complement components.
 - physical and chemical agents.
- The most important sites of membrane damage during cell injury

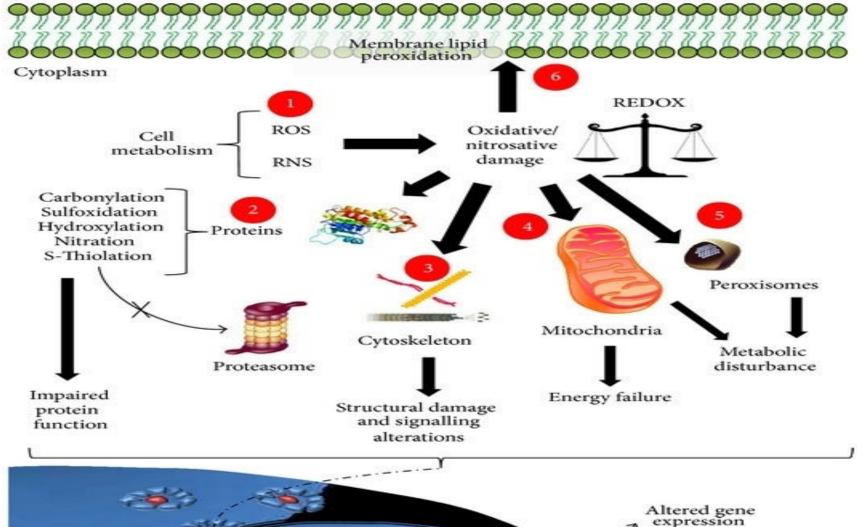
are:

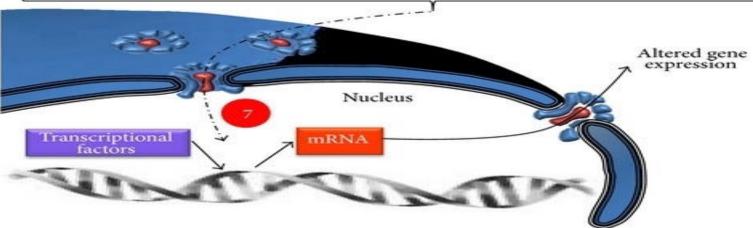

- Milochondrial membrane damage
- Plasma membrane damage
 - leads to loss of osmotic balance and influx of fluids and ions, as well as loss of ostular condents.
- Injury to lysosomal membranes.
 - leads to leakage of their enzymes into the cytoplasm and enzymatic digestion of cell components, necrosis.

Mitochondrial Electron Transport Chain Defects Due to Phospholipid Deficits

Membrane Damage

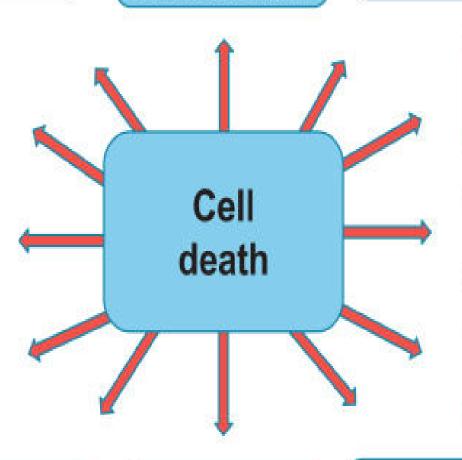
- ROS → lipid peroxidation
- ↓ phospholipid synthesis
- Cytoskeletal damage (Ca influx also activates proteases)


EFFECTS:


Mitochondrial membrane damage causes increased cytosolic Ca⁺⁺, oxidative stress, lipid peroxidation, phospholipase activity, loss of membrane potential, leakage of Cytochrome c

Plasma membrane damage causes loss of osmotic balance, loss of proteins, enzymes and nucleic acids.

Injury to lysosome membranes causes leakage of enzymes with destruction of cellular components.


Autophagy: ROS acts as a signal transducer and irreversibly oxidizes DNA and other critical cellular biomarkers Apoptosis: Induced in inflammatory cells, i.e. neutrophils, macrophages, and eosinophils, leading to damaged DNA and protein

<u>Necrosis:</u> Initiated via TNF, causes swelling of cells and eventual leakage of contents

Entosis: Accumulated ROS in vacuoles can trigger cells to recruit autophagy proteins necessary for cell death

Anoikis: ROS serves as a cell adhesion mediator that allows cells to avoid programmed death

Mitotic catastrophe: Triggered by oxidative stress, ROS enhances p53 function and programmed cell death

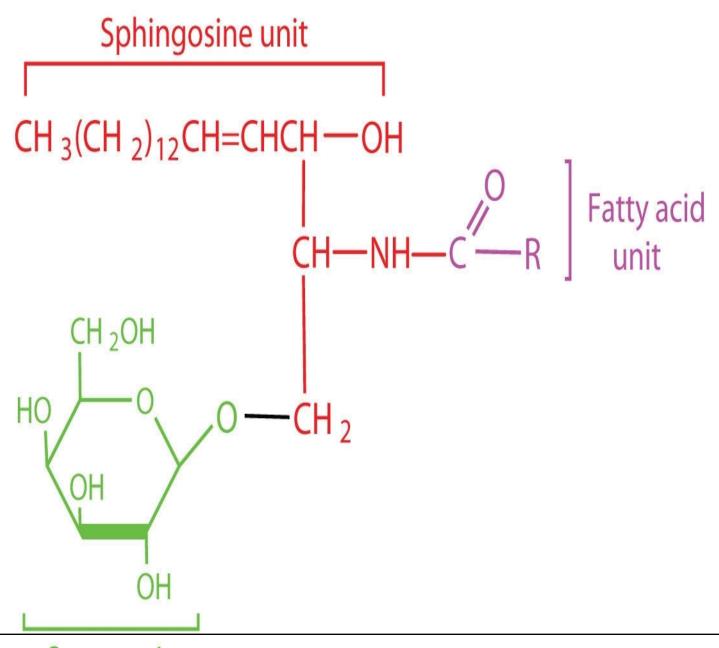
Cornification: Small proline-rich proteins (SPRR) in cell envelope are responsible for ROS quenching, preventing damage to the skin

Paraptosis: As a result of mitochondrial Ca²⁺ influx, ROS production leads to mitochondrial membrane loss of function

Pyronecrosis: ROS stimulates inflammasome production, which downstream disrupts the cell ion gradient leading to cell lysis

Wallerian degeneration: Neuronal degradation as a result of an accumulation of ROS in absence of Sarm1 Excitotoxicity: leads to lethal influx of Ca²⁺, resulting in

excessive ROS production www.FirstRanker.com Pyroptosis: ROS leads to inflammsome complex production, which causes the production of inflammatory cytokines and further cell damage


Fatty Liver Due to Phospholipid Defects.

Glycolipids OR Glycosphingolipids

What are Glycolipids?

- Glycolipids are type of compound Lipids.
- Chemically Esters of Fatty acids with Alcohol and contain additional group as Carbohydrate moieties

Types Of Glycosphingolipids

Based Upon

- Alcohol
- Fatty acid
- Number and Type of Carbohydrate moieties and there derivatives linked to a Ceramide

Types OF Glycolipids Based on Alcohol

- Glycoglycerolipids

 (More In Plants)
 Glycerol as Alcohol
- Glycosphingolipids
 (Predominant in Animals and Human)
 Sphingosine as Alcohol

Classification of glycolipids:

- (A). Glycero-glycolipids: Glycerole backbone with carbohydrates
 - a) Galactolipids
 - b) Sulfolipids
- (B). Sphingo-glycolipids: Sphingosine backbone with carbohydrates
 - a) Cerebrosides
 - b) Gangliosides
 - c) Globosides

Glycosphingolipids Predominant Animal Glycolipids

 Ceramide linked with one or more sugar residues /there derivatives

Human Glycosphingolipids All has Ceramide in Their Str

- 1) Cerebrosides
- 2) Gangliosides
- 3) Globosides

Cerebrosides

Simplest GlycoSphingolipids

Monoglycosylceramide

Cerebrosides

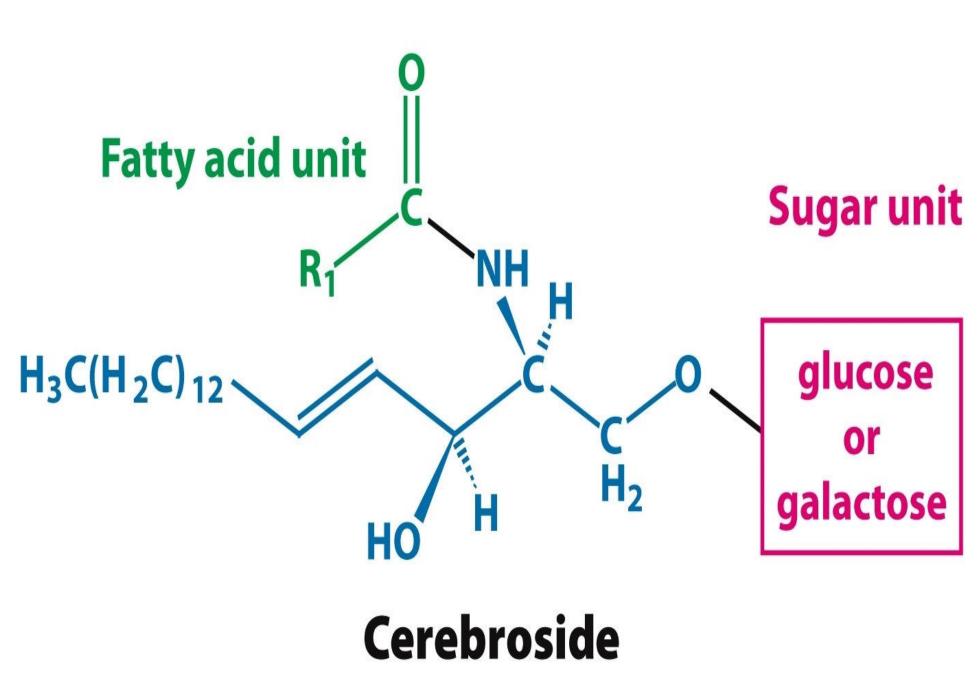
 Cerebrosides are type of Glycosphingolipids

 Ceramide linked with one sugar residue

Types of Cerebrosides

Depending upon Carbohydrate moiety
 Types of Cerebrosides are:

-Glucocerebrosides

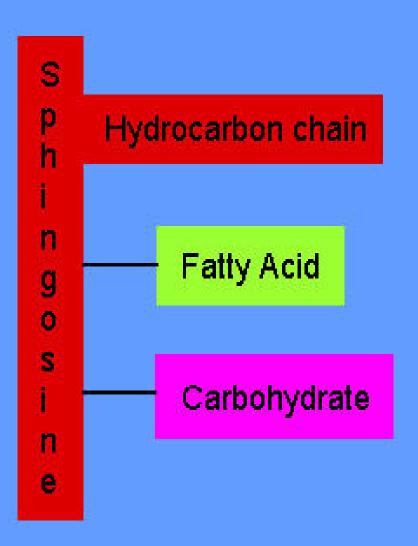

(Occur In Extra neural/Other tissues)

-Galactocerebrosides

(Present In Neural)

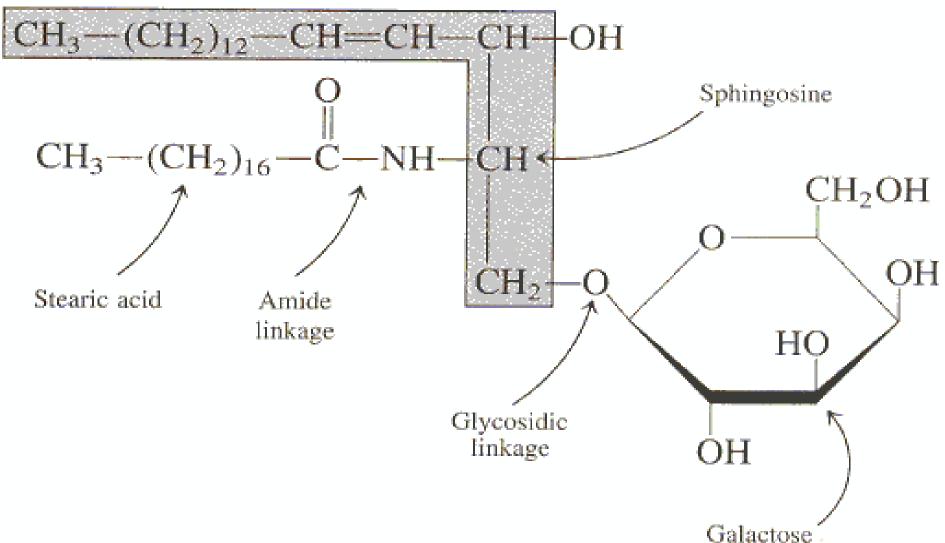
Structures Of Cerebrosides

(a glycolipid)


Sphingosine

Galactocerebroside, a glycosphingolipid

$$\begin{array}{c|c} CH = CH(CH_2)_{12}CH_3 \\ H - C - OH \\ & \begin{array}{c|c} O \\ & \end{array} \\ HOCH_2 & H - C - N - CR \\ & \begin{array}{c|c} H & CH_2 \\ & \end{array} \\ OH & \begin{array}{c|c} O \\ & \end{array} \\ OH & \begin{array}{c|c} O$$


A Glucocerebroside

Glucocerebroside

Galactocerebroside

Cerebrosides	Fatty Acid Composed In
Kerasin	Lignoceric acid (C24) SFA
Cerebron	Cerebronic acid (C24) Hydroxy SFA
Nervon	Nervonic acid (C24) MUFA
Oxynervon	Oxynervonic acid (C24)
	www.FirstRanker.com

Gangliosides

Complex Glycosphingolipids

Gangliosides

 Gangliosides are Type of Glycosphingolipids

In comparison to Cerebrosides,
 Gangliosides are more

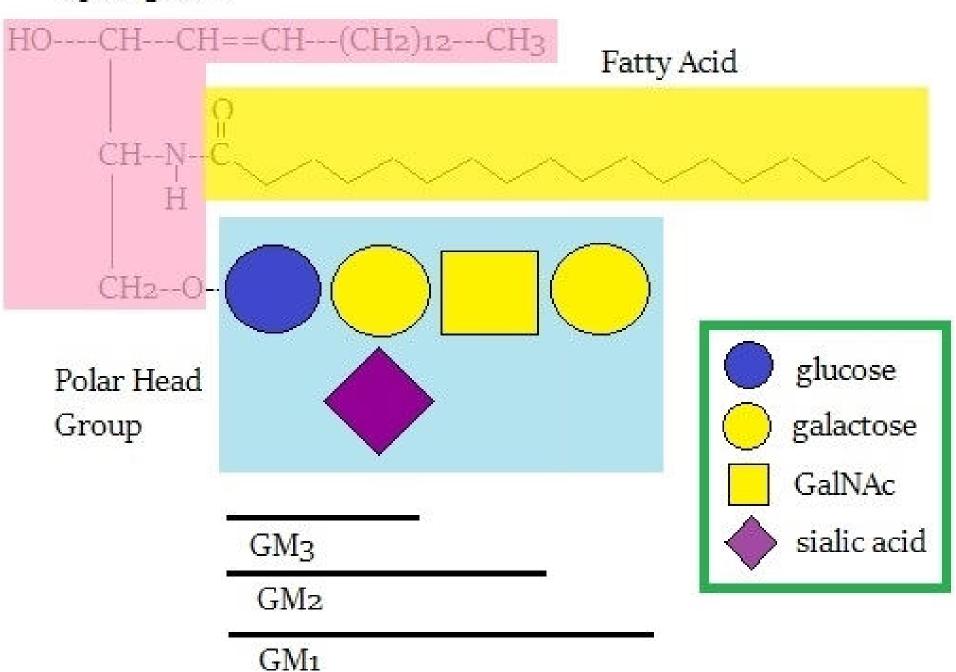
complex.

NANA in Gangliosides

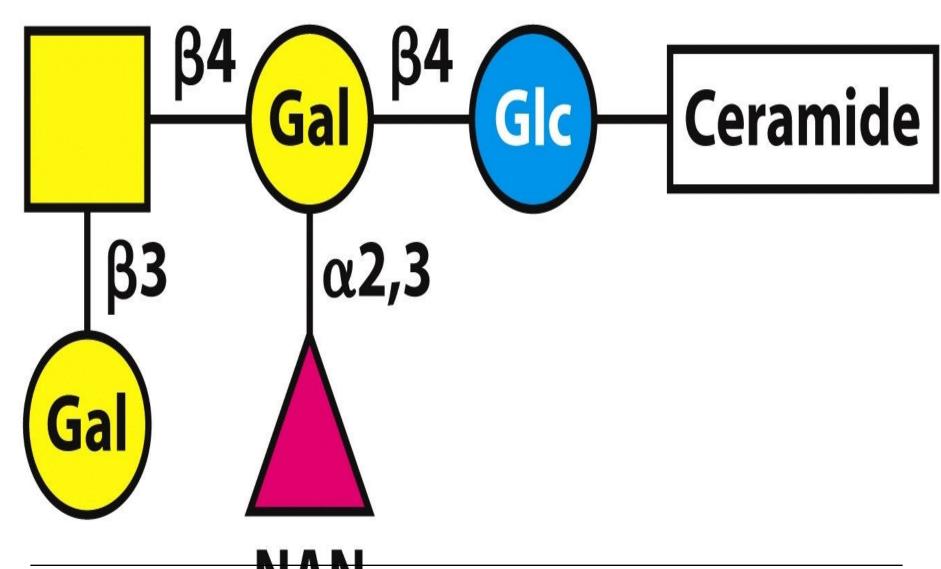
 Characteristic feature of Gangliosides is

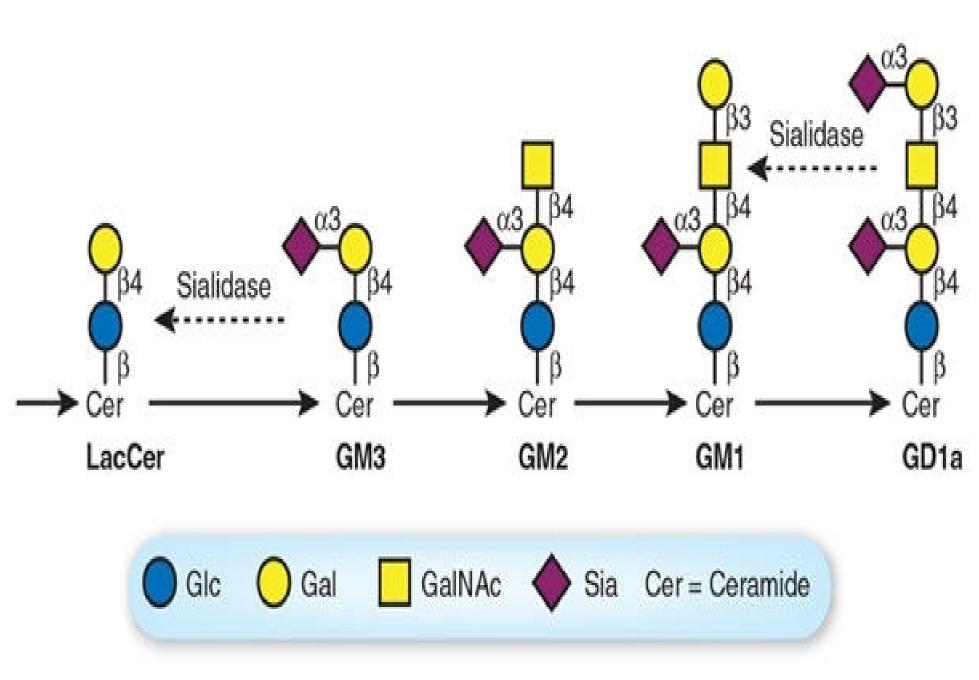
 Structure contains one or more N-Acetyl Neuraminic Acid (NANA)/Sialic acid residues

 NANA/Sialic acid is derived from N-Acetyl Mannose and Pyruvate.

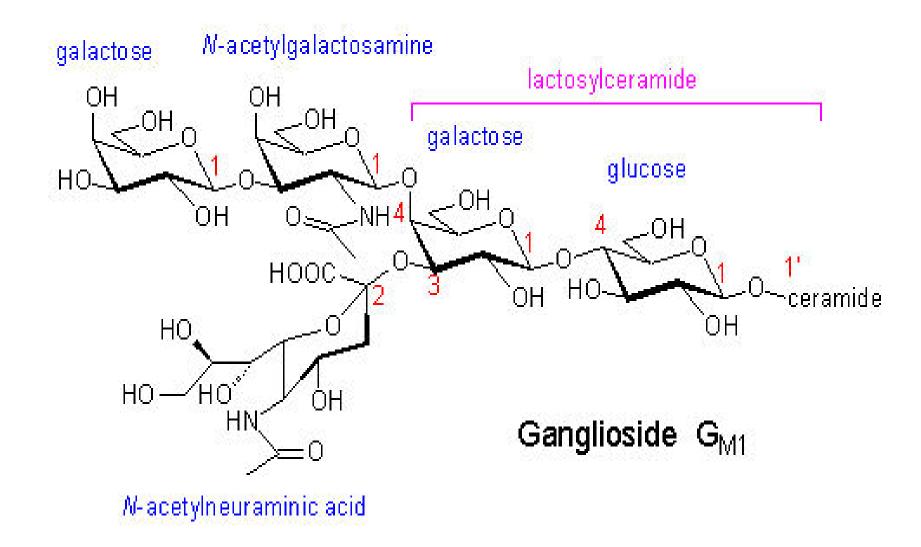


- Gangliosides structure has Carbohydrate moieties as
 - -Glucose
 - -Galactose
 - -N-Acetyl Galactosamine
 - –N-Acetyl Neuraminic Acid (NANA)/Sialic acid.


Structure Of Gangliosides


Sphingosine

GalNAc



- GM3 is more common and simplest Ganglioside.
- GM3 has single Sialic acid and less carbohydrate moieties.

• GM1 is a more complex Ganglioside.

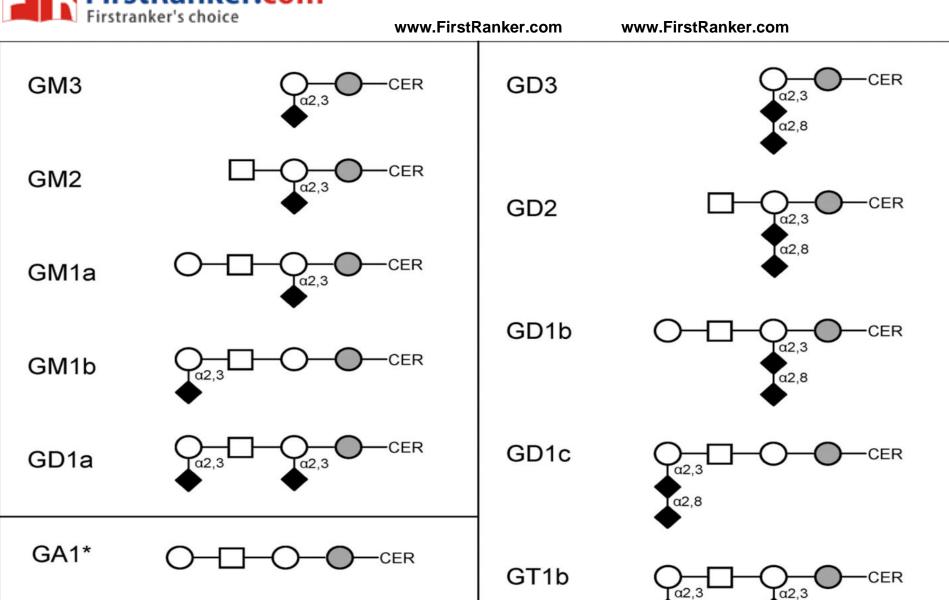
• GM1 is obtained from GM3.

Types Of Gangliosides

- Depending upon the Chemical structure and Chromatographic separations
- More than 30 Types of Gangliosides are isolated:

Types Of Gangliosides

 Based on Number and Position of NANAs in Ganglioside structure


 Various types and subtypes of Gangliosides are existing in human body

Types of Gangliosides

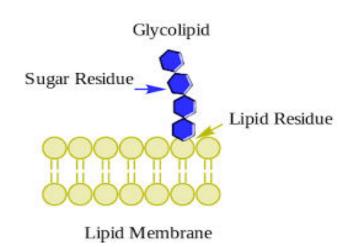
- -Gangliosides with one NANA residue
 - **GM1**
 - GM2
 - **GM3**
- -Gangliosides with two NANA residues
 - **GD**
- -Gangliosides with three NANA residues
 - GT

GA2*

GA3*

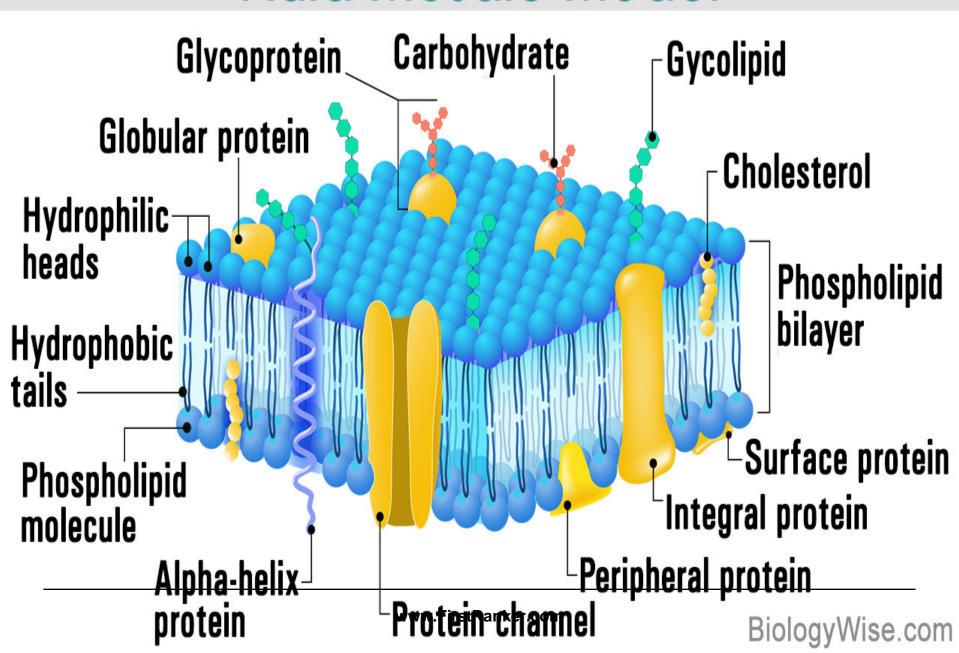
O galactose, ☐ N-acetyl-galactosamine, O glucose, ◆ sialic acid, CER = ceramide

CER

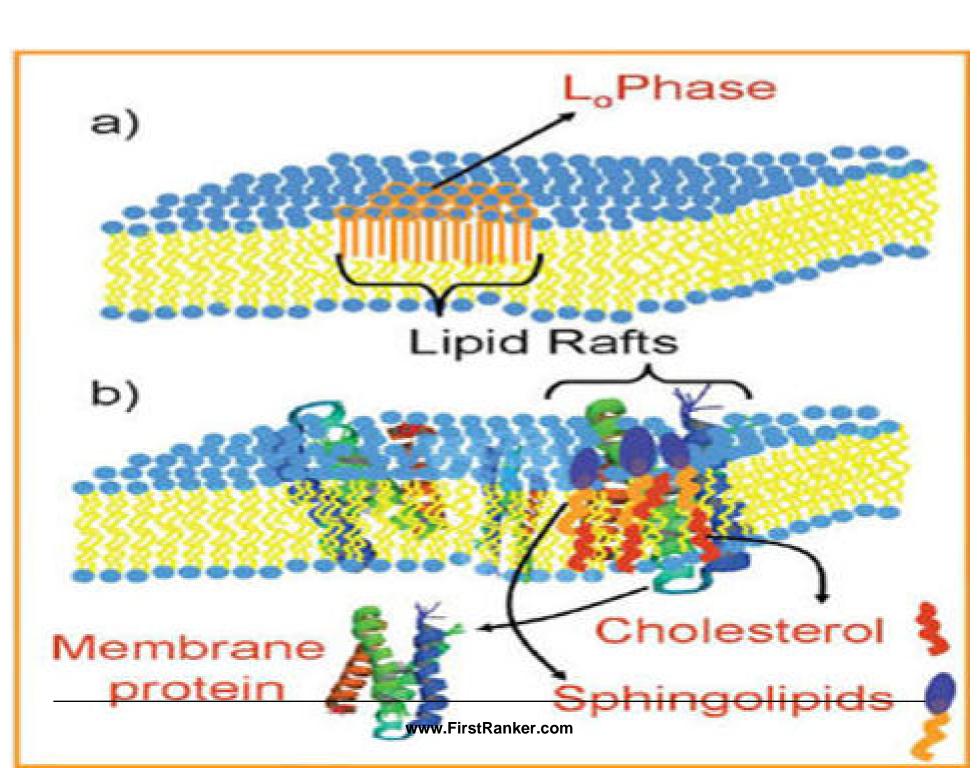

α2,8

Sources Of GlycoSphingolipids

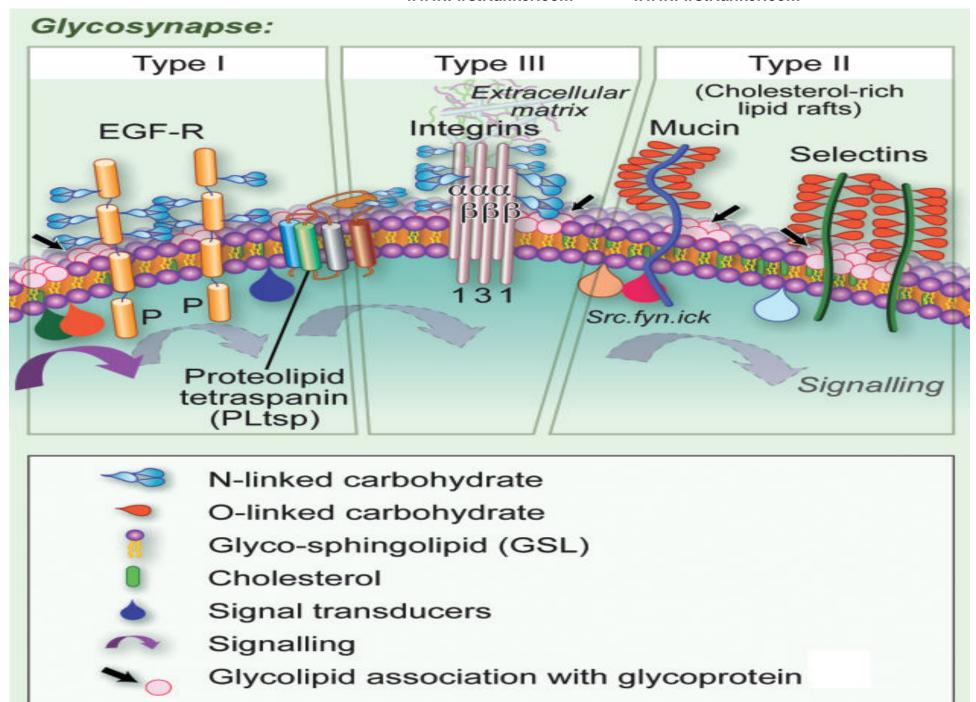
- Dietary has no much role
- All forms of Glycolipids Endogenously Biosynthesized
- Utilized for Structure and Functional Role

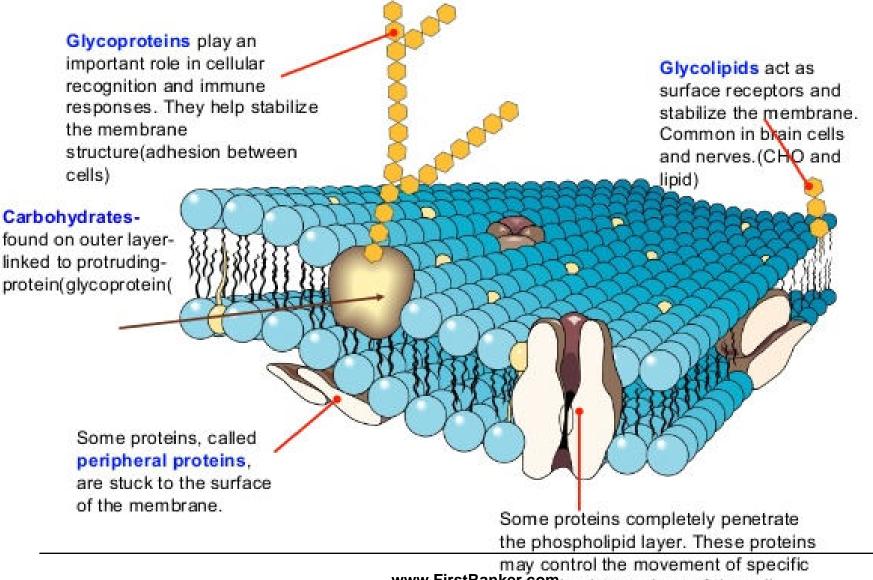


Occurrence/Distribution Of Glycolipids


- Glycosphingolipids are widely distributed
- In every cell and tissue of human body
- Occur particularly in outer leaflet of Cell membrane/Glycocalyx /Cell Rafts
- They are richly present in nervous cells.

Fluid Mosaic Model



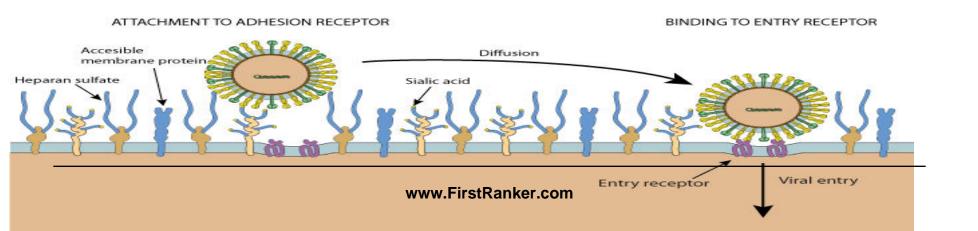

• Glycolipids occur on the outer surface of every cell membrane as component of Glycocalyx /(Cell raft).

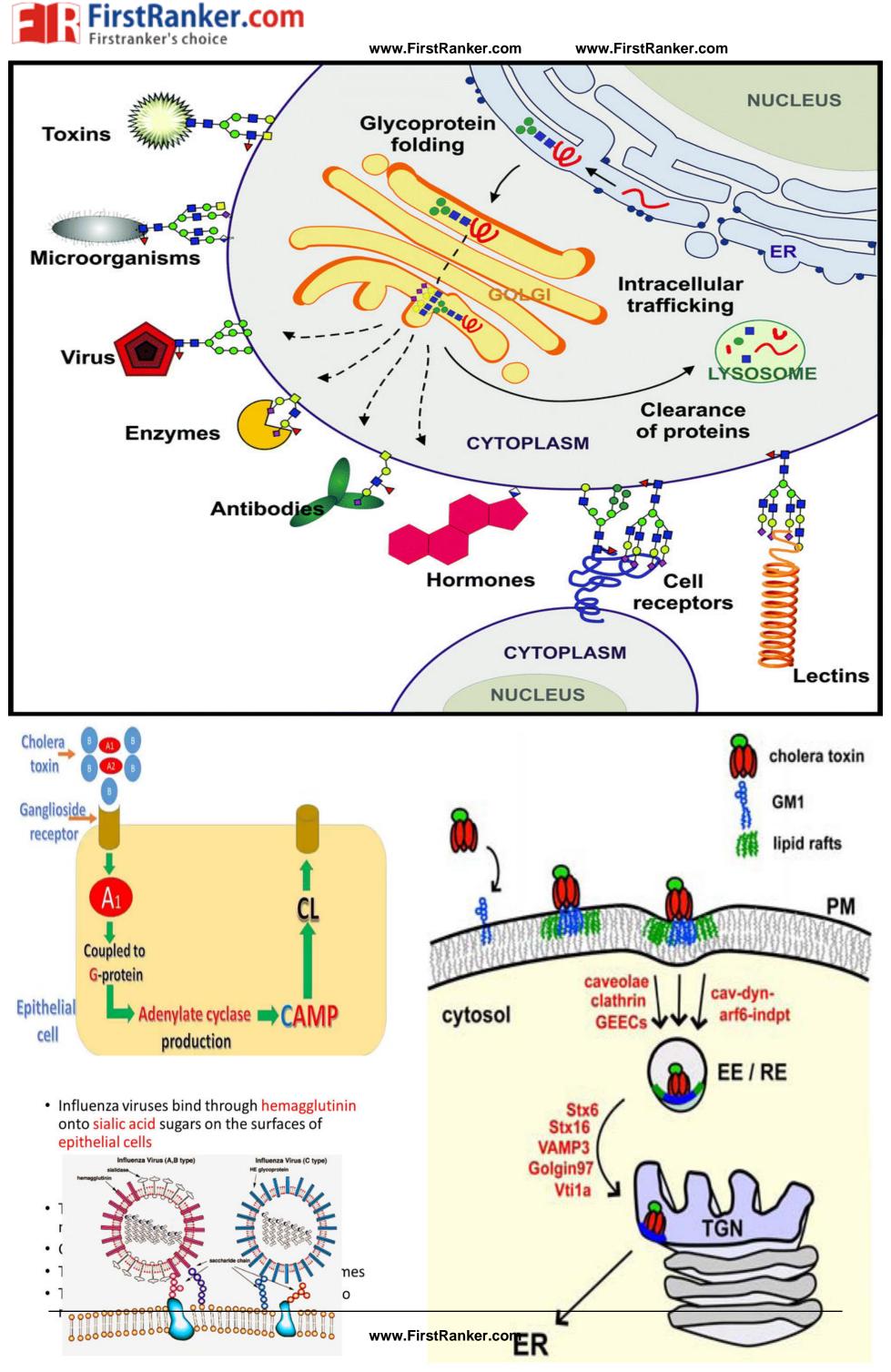
Membrane Structure

- -Cerebrosides: Richly present in
 - White matter of brain
 - Myelin sheath
- —Gangliosides: Predominantly present in
 - Grey matter of brain
 - Ganglions and Dendrites

Functions Of Glycolipids

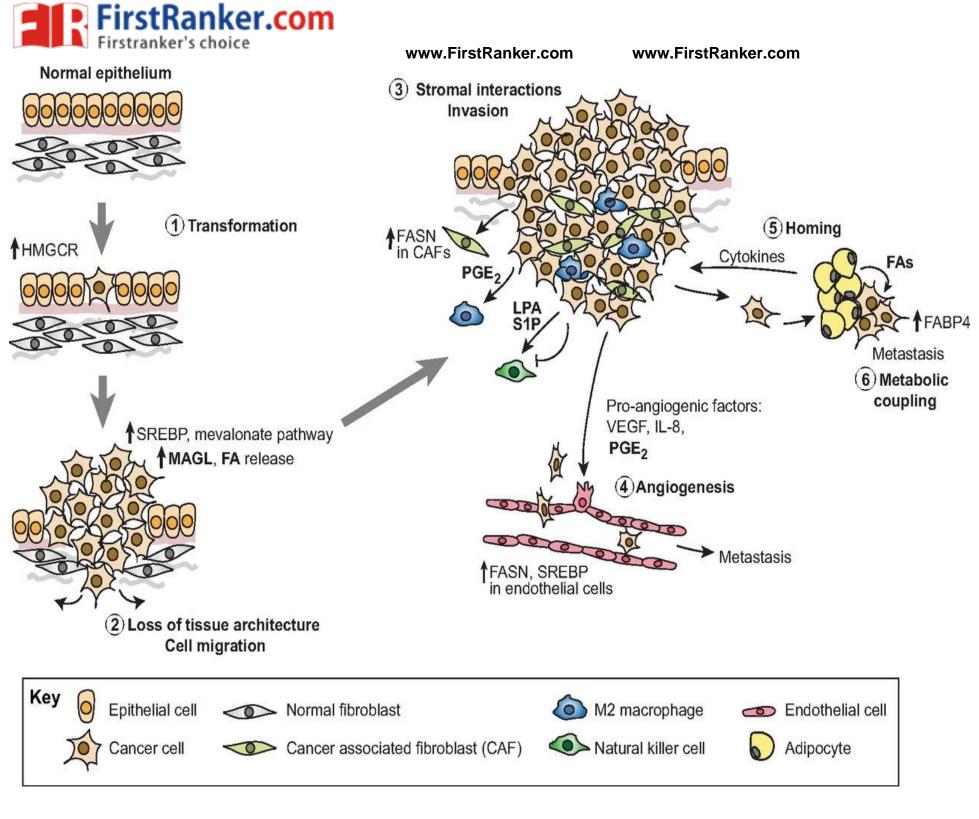
- Glycolipids are richly present in nervous tissue, they help in:
- Development and function of brain.
- Nerve impulse conduction


Glycolipids present in cell membranes
 Serve as :

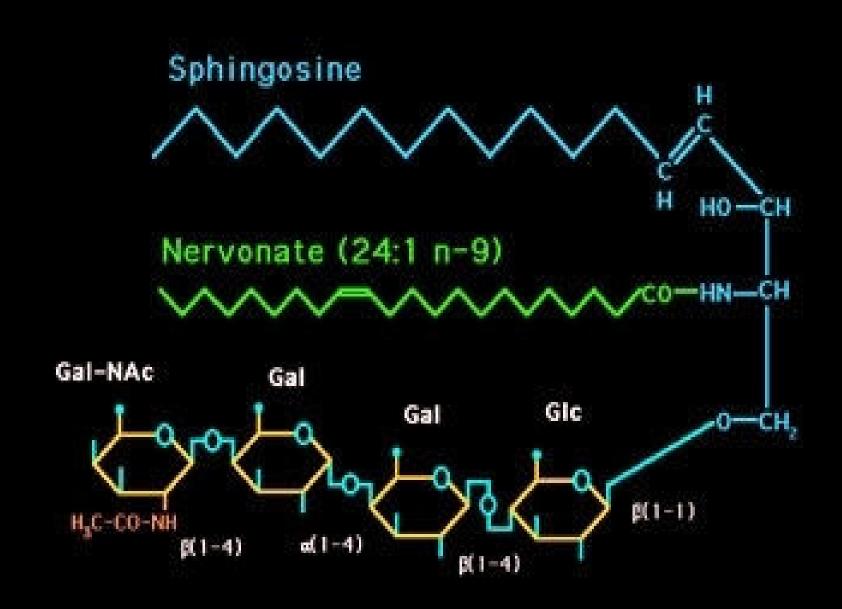

-Antigens

- Blood group Antigens
- Embryonic Antigen
- -Receptor sites for Hormones.

- Glycolipids of cell membrane serve as:
- Markers for cellular recognition which helps in:
 - -Cell Functioning
 - —Cell-Cell interaction
 - -Cell Signaling/Signal Transduction
 - Anchoring sites for Antigens, Toxin and Pathogens
 - -Cell Growth and Differentiation
 - GM1 serve as receptor /anchoring site to:
 - -Cholera toxin
 - -Tetanus toxin
 - -Influenza viruses



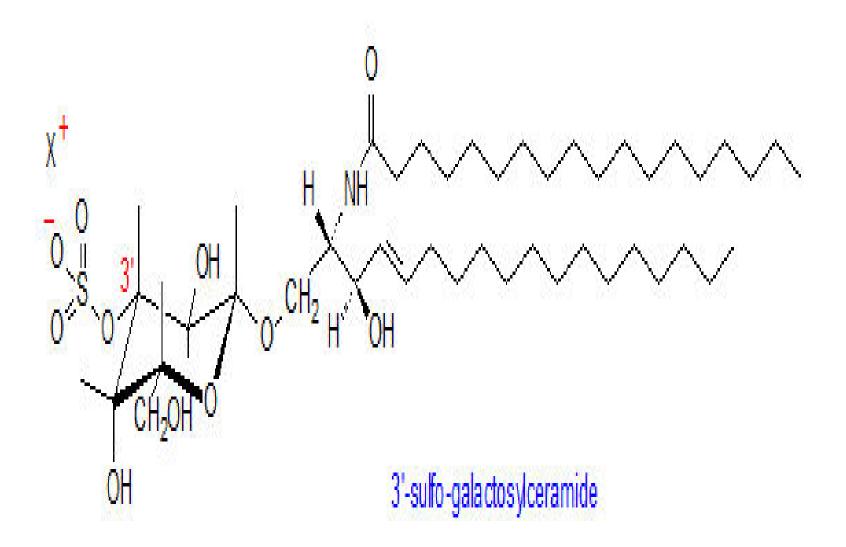
- The Cholera toxin on binding to intestinal cells
- Stimulates secretion of Chloride ions into gut lumen.
- Resulting in copious diarrhea of Cholera.

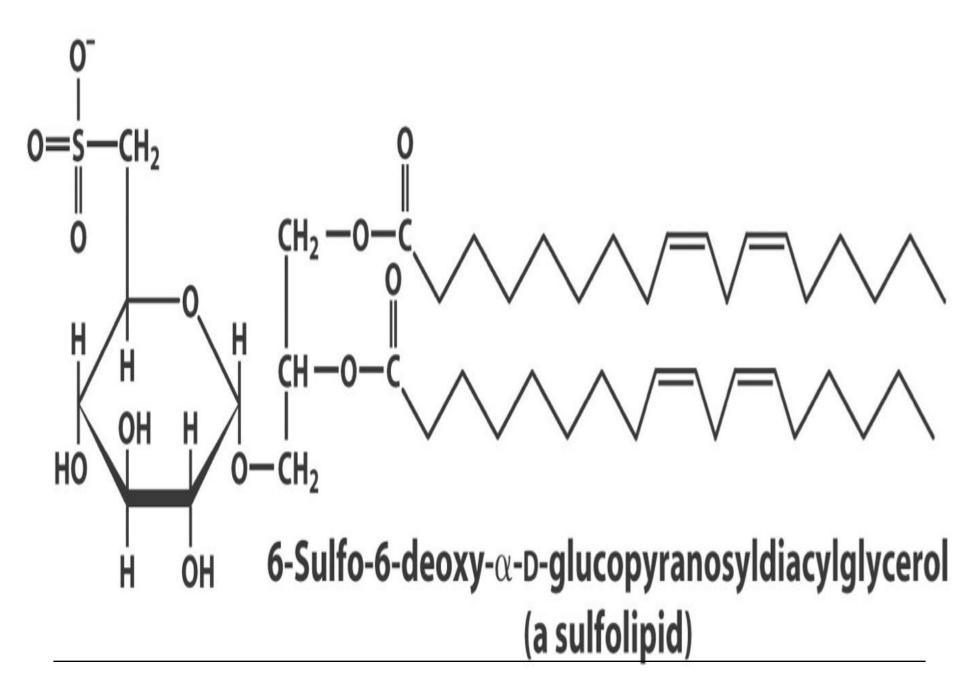

 In various malignancies dramatic changes in membrane Glycolipid composition are noted.

Globosides

- Globosides are type of Glycolipids.
- Structurally Ceramide linked with Oligosaccharide is Globosides.

Globoside




Sulfatides/Sulfolipids

- Sulfolipids are compound Lipids.
- Sulfolipids are Ceramide linked to Sulfated sugar units/ Oligosaccharides.

- Structurally Sulfolipids may also has Glycerolipids containing
 Sulfate groups.
- Sulfolipids are component of nervous tissue.

Lipidosis

Lipid Storage Disorders

Inborn Errors Of Lipid Metabolism

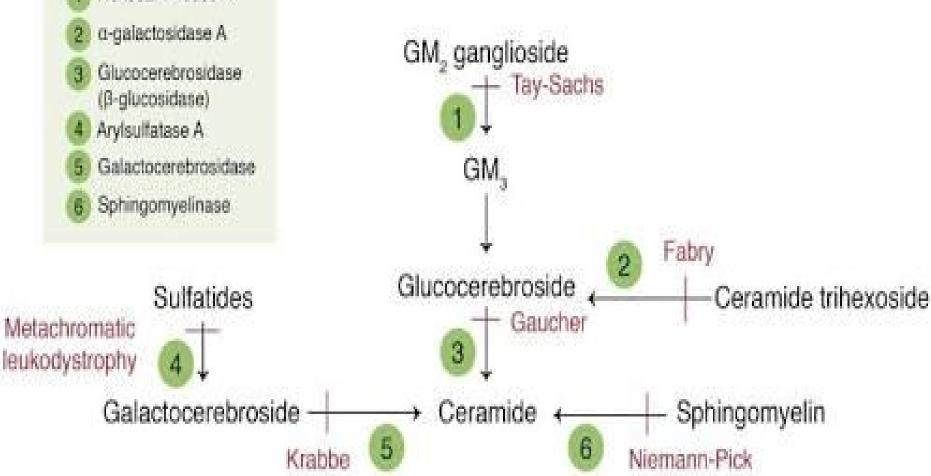
Lysosomal Storage Disorders

Rare Genetic Lipid Associated Disorders

- Niemann Picks Disease
- Tay Sach's Disease
- Gauchers Disease
- Farbers Disease
- Krabbes Disease
- Sandhoff's Disease

SPHINGOLIPIDOSES

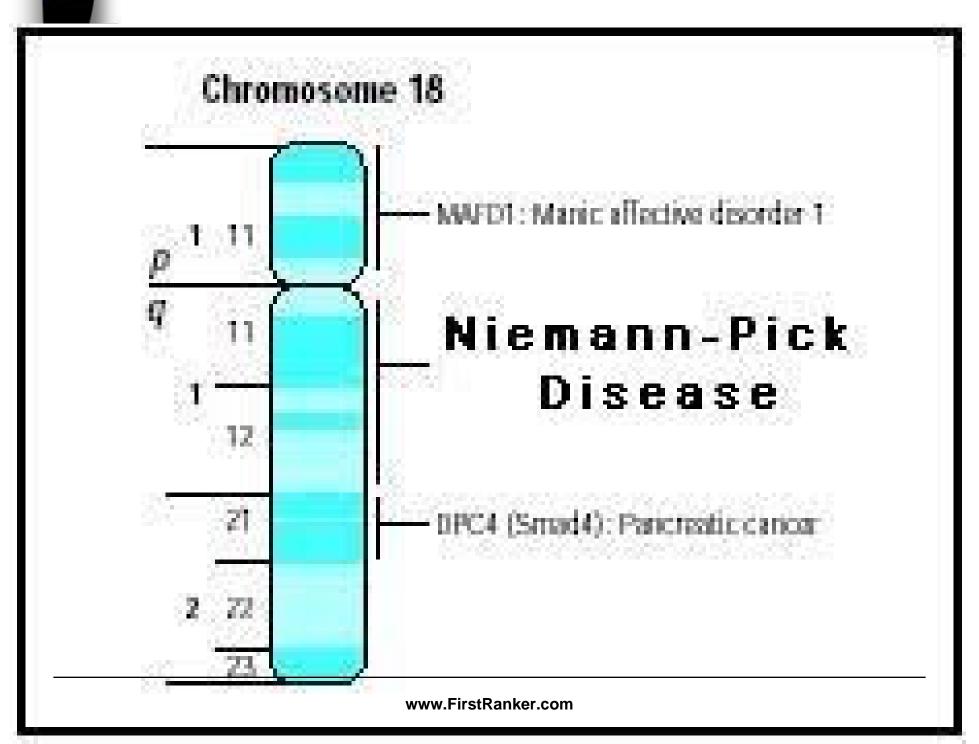
- Tay-Sachs disease AR Hexosaminidase A
 - Dievelopmental regression, Blindness.
 - Cherry-red spot, Deafness
- Gaucher's disease AR Glucosylceramide Type I
 - Joint and limb pains, Splenomegaly


B- Glucosidase Type II

Spasticity, fits; death

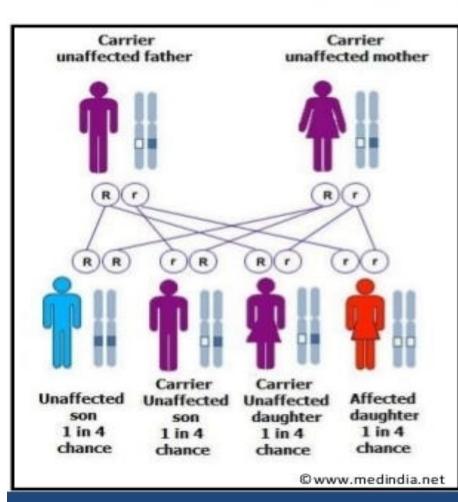
- Niemann-Pick disease AR Sphingomyelinase
 - Fallure to thrive, Hepatomegaly
 - Cherry-red spot, Developmental

Lysosomal Storage Disorders



www.FirstRanker.com

Niemann-Pick disease


- Sphingomyelinase deficiency causes sphingomyelin accumulation within mononuclear phagocyte system (and neurons and glial cells)
 - · Autosomal recessive
 - cherry red spot similar to Tay-Sachs disease.

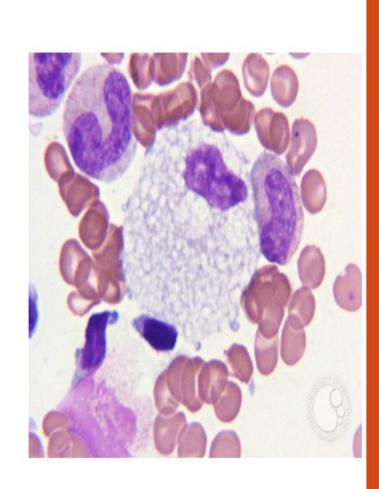
Niemann Picks Disease Autosomal Recessive Disorder

Is it Hereditary?

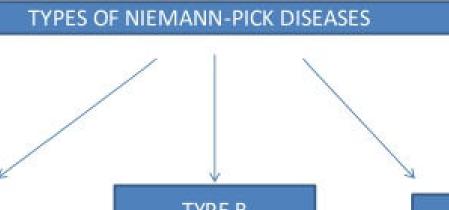
- The disease has an autosomal recessive pattern of inheritance.
- Both alleles of the gene must be mutated in such a way that function is impaired.
- If both parents are carriers, there is a 25% chance for an affected child with each pregnancy.

10

Niemann-Pick disease


Heterogeneous group of disorders

Increased incidence in Jewish population


This disorder is divided into five main types based on the genetic cause and the signs and symptoms (A,B,C,D,E)

Clinical manifestation

- Retardation
- Hepatoslenomegaly
- · Lymphadenopathy
- Pigmentation
- Impaired neurologic function
- Niemann-Pick cells lipid-laden giant foam

TYPE A

Most severe form, occurs in early infancy.

characterized by an enlarged liver and spleen, swollen lymph nodes, and profound brain damage by six months of age.

TYPE B

Involves an enlarged liver and spleen, occurs in the preteen years.

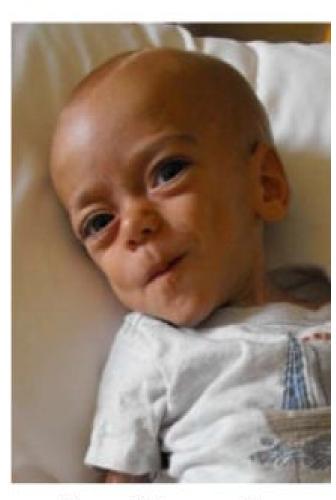
The brain is not affected

TYPE C

May appear early in life or develop in the teen or adult years. individuals have only moderate enlargement of the spleen and liver,

brain damage

Signs and Symptoms


(related to the organs in which they accumulate)

Type A

- ✓ Large abdomen within 3-6 months
- ✓ Cherry red spot in the eye
- ✓ Feeding difficulties (dysphagia)
- ✓ Loss of early motor skills (ataxia)
- ✓ Rapid decline in the child after 6 months

Type B

- ✓ Abdominal swelling may occur in early childhood
- ✓ No brain and nervous system involvement
- ✓ Some may develop repeated respiratory infections and breathing problems

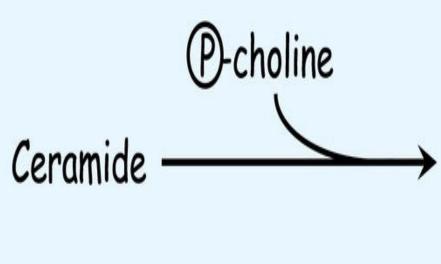
Diagnosis

Type A and B:

- * Measurement of ASM amount in WBC
 - by using a blood/bone marrow sample.
 - can detect patients, not carriers.
- DNA tests (to determine if carriers have type A or type B)

Type C:

- * Skin biopsy: scientists closely examine how the skin cells grow, keep track of how they move & store cholesterol.
- **DNA** tests
- Few centers offer tests for prenatal diagnosis.
- Other tests might include:
 - * Bone marrow aspiration
 - * Liver biopsy
 - * Slit-lamp eye exam

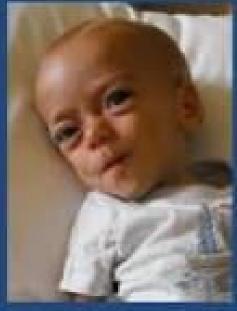


Aspiration needle

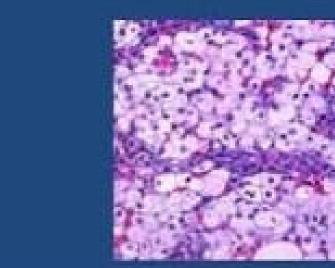
*ADAM

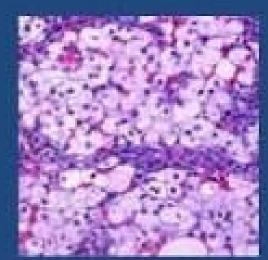
Sphingomyelin (Cer-(P)-choline)

degradation


Niemann-Pick A & B (defect in sphingomyelinase)

phosphorylcholine

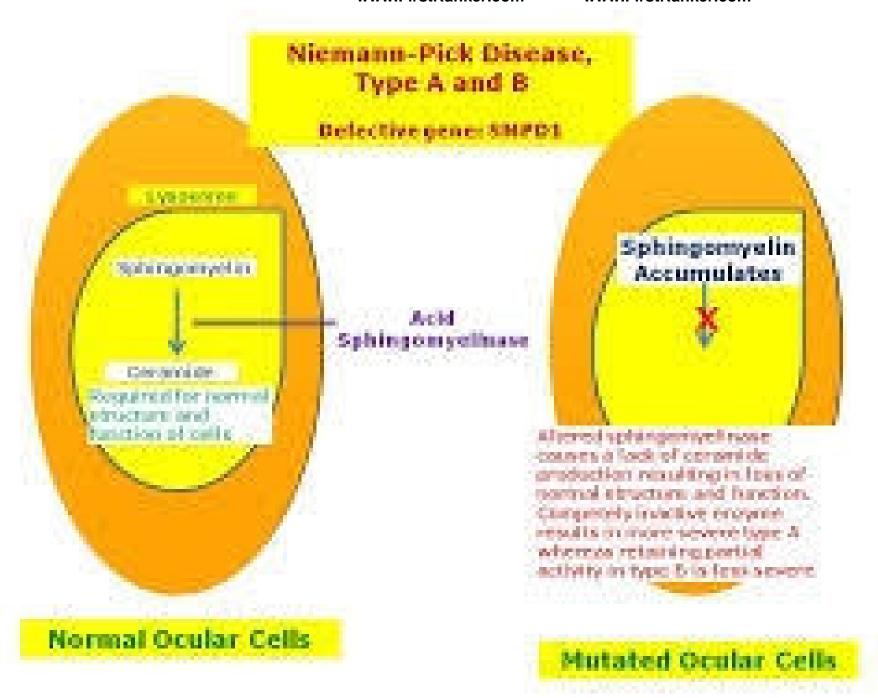

Niemann-Pick Disease^{1.6}



Neurological Detoriation Cherry-red spot on the retina the eye Enlarged liver and spleen Lipid-laden cells in bone marrow Pulmonary disease Liver dysfunction

Foam Cells

37


Introduction

Niemann-Pick disease refers to

- a fatal inherited metabolic disorder.
- classified in a subgroup of lysosomal storage disorders called sphingolipidoses
- involves dysfunctional metabolism of sphingolipids
- accumulation of harmful quantities of lipids in the spleen, liver, lungs, bone marrow, and brain.

Lipid Storage Disorders Related To Glycosphingolipids

Disorders Of GlycoSphingolipids

- Gaucher's Disease
- Tay Sach's Disease
- Farbers Disease
- Krabbes Disease
 - Gaucher's Disease:
- **Defect:** Deficiency of Cerebroside degrading enzyme **Glucocerebrosidase**.
- Biochemical Alteration: Abnormal accumulation of Cerebrosides in tissues.
- Consequences: Affect normal function of tissues where it is accumulated.

Gaucher Disease: A Lysosomal Storage Disorder

Gaucher Disease:

- Most common lysosomal storage disorder
- Autosomal recessive
- Genetic defect on chromosome 1
- Enzyme deficiency
- Reticuloendothelial system
- Progressive, multisystemic, multiorgan dysfunction

Philippe Gaucher 1854 – 1918

Incidence & inheritance of Gaucher disease

Both parents must carry the faulty gene to have an affected child, and men and women are affected equally

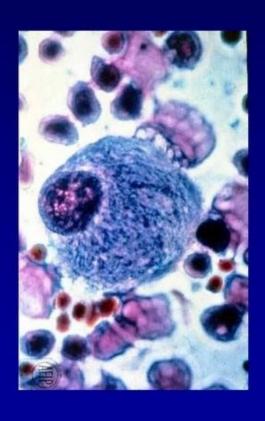
Autosomal recessive

Carrier father Carrier mother

25%

Gaucher Disease: Overview

- The most common lysosomal storage disease
 - Incidence: approximately 1 in 40,000 for non-Jewish populations
- Caused by a deficiency of the enzyme glucocerebrosidase
- The glycolipid glucocerebroside accumulates in lysosomes of macrophages
- Lipid-filled Gaucher cells displace normal cells in
 - Bone marrow
 - Spleen
 - Liver
 - Lungs
 - CNS*



Gaucher disease

- defect of glucocerebrosidase 3 types (type 1 - survival, type 2 - lethal, type 3 intermediate)
- accumulation of glucocerebroside (Glcceramide) - kerasin
- Gaucher cells spleen (red pulp), liver (sinuses), bone marrow

GAUCHER DISEASE (TYPE II)

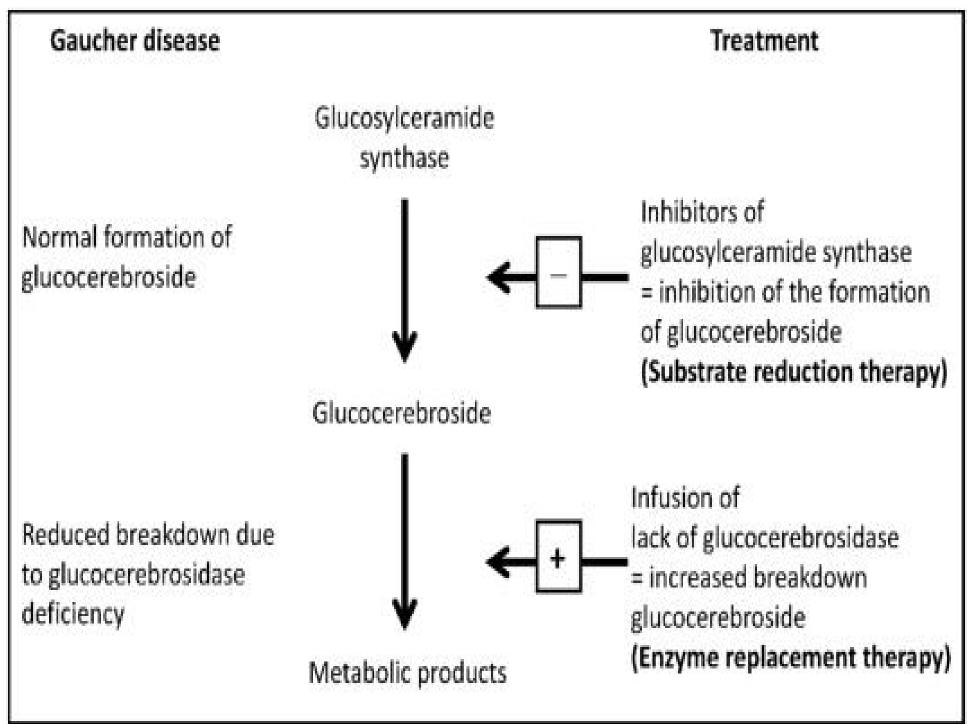
- Can diagnosed by Gaucher cells in bone marrow
- Neuropathology:
 - Little lipid storage
 - Neuron loss,
 especially in
 brainstem

Gaucher Disease (this is a hereditary disease)

- Symptoms
 - Distended abdomen
 - Bone pain
 - Anemia
 - Cognitive impairment

When to Suspect Gaucher Disease and Establishing the Diagnosis

Observations


- Splenomegaly in any age group
- Nosebleeds and unexplained bruising
- Persistent anemia or thrombocytopenia
- Bone pain
- Failure to thrive

- Neurologic deterioration in a young infant
- Congenital ichthyosis
- Horizontal gaze disorder or visual apraxia

After clinical suspicion has been raised, diagnosis can be confirmed by

- Enzymatic analysis in white blood cell pellet in expert lab
- Mutation analysis
- Bone marrow biopsy is NOT required for the diagnosis

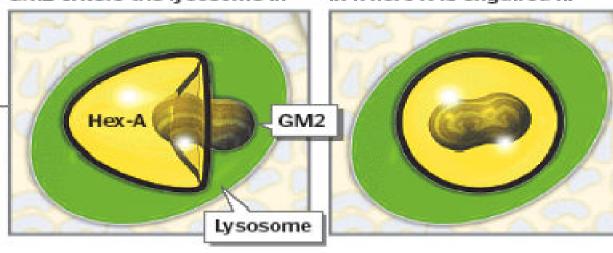
Tay Sach's Disease:

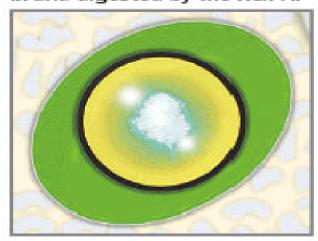
- Defect: Deficiency of Ganglioside degrading enzyme: Hexoseaminidase-A.
- Biochemical Alteration: Abnormal accumulation of Gangliosides in the tissues.
- Consequences: Affect normal function of tissues.

Tay Sach's features:

TAY SACHS

- Testing recommended
- Autosomal recessive
- Young death (<4 yrs.)
- Spot in macula (cherry red spots)
- Ashkenazi Jews
- CNS degeneration
- Hex A deficiency
- Storage disease

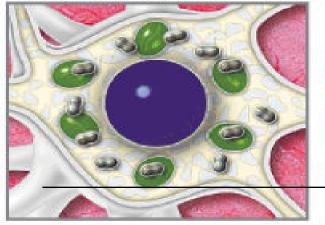

Cells in healthy children


In a healthy child, a lipid, or fat, called GM2 ganglioside enters the nerve cell as a source of food. Among the components of the cell are lysosomes, which might be thought of as the "stomachs" of the cell. They contain an enzyme called Hexosaminidase A, or Hex-A, that digests the GM2.

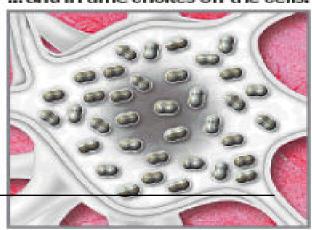
GM2 enters the lysosome ...

... where it is engulfed ...

... and digested by the Hex-A.



Cells in children with Tay-Sachs disease


Children with Tay-Sachs lack Hex-A, so the GM2 proliferates to such a degree that it eventually kills the cell, gradually shutting down the central nervous system.

If Hex-A enzyme is not present GM2 accumulates ...

... and in time chokes off the cells.

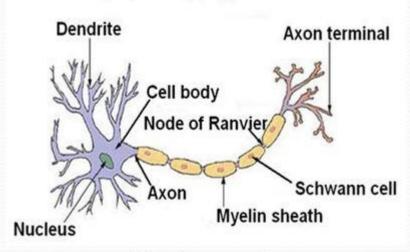


REID BROWN | THE PLAIN DEALER

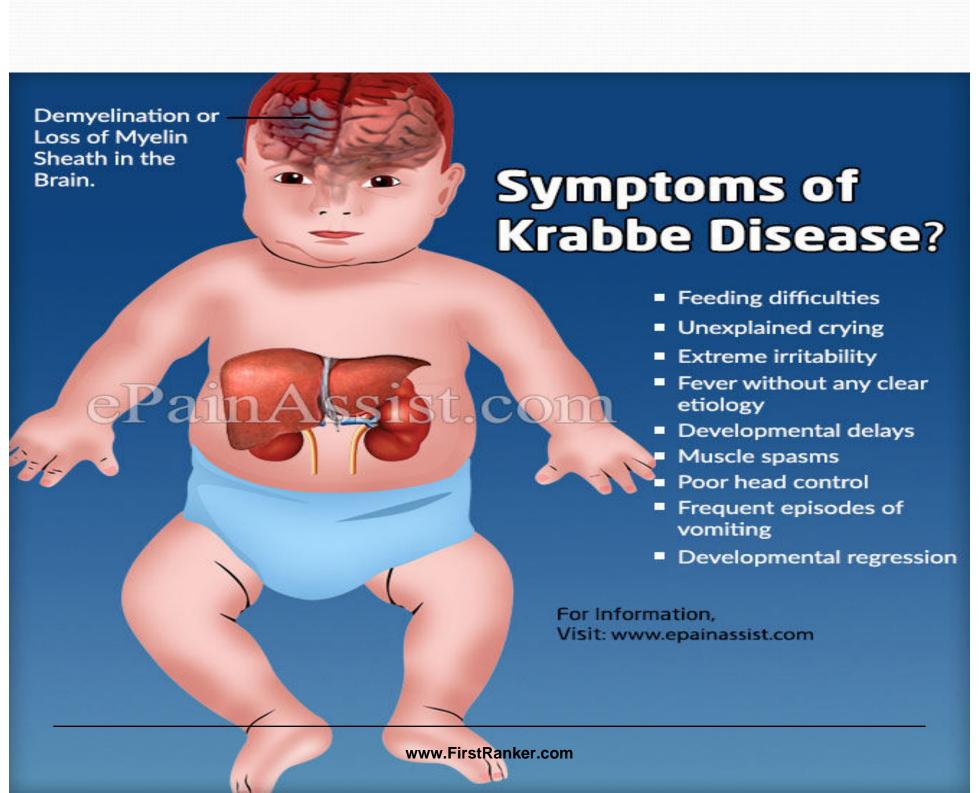
Brain damage Cataracts Jaundice Enlarged liver Kidney damage If a galactosemic infant is given milk, unmetabolized milk sugars build up and damage the liver, eyes, kidneys and brain

@ADAM, Inc.

WHAT IS KRABBE'S DISEASE?


- Krabbe's disease (globoid cell leukodystrophy) is a degenerative disorder that affects the nervous system.
- It's hereditary autosomal recessive disease.
- Occurrence of 1 in 100,000 newborns.
- It affects the myelin sheath of the nervous system.
- Knud Haraldsen Krabbersternen

HOW IS KRABBE DISEASE CAUSED?


- Mutations in the GALC gene, causing deficiency of enzyme galactosylceramidase.
- This effects the growth and maintenance of myelin, which causes severe degeneration of motor skills.

Structure of a Typical Neuron

 $Fig.1 - www^1$.

Krabbe disease is a leukodystrophy.

Farber Disease

- Autosomal recessive disorder
- Results from deficiency of lyzozomal enzyme ceramidase
 & the accumulation of ceramide in various tissues
 especially joints.
- Symptoms begin as early as 1* year of life with painful jt. swelling & nodule formation.
- It's diagnosis should be suspected in patients who have nodule formation over jt's. but no other finding of RA.

Farber's Disease

Cause

- Deficiency of the enzyme called ceramidase
- Resulting in accumulation of ceramide in joints, tissues and central nervous system

Clinical features

- Dyspnea
- Dysphagia
- Vomiting
- Arthritis
- Horseness
- Xenthemas

Treatment

- no specific treatment for Farber's disease
- Most children with the disease die by age 2
- Joint contractures

Farber's Lipogranulomatosis

Symptoms of Farber's Lipogranulomatosis

- Hoarseness in voice.
- Swollen joints and lymph nodes.
- Impaired motor and mental ability.
- Difficulty while swallowing.
- · Vomiting.
- Arthritis.
- Enlargement of spleen and liver.

Lysosomal storage disease: ocular features

Lysosomal lipid storage disorders associated with cherry red macula:

- ·Niemann-Pick A
- GM1 gangliosidosis
- ·Tay-Sachs disease
- ·Sandhoff disease
- ·Farber lipogranulomatosis
- Sialidosis

Sandhoff Disease

- Deficiency of both Hexosaminidase A and B.
- Clinical course is very similar to Tay-Sachs

Sialidosis

- AR
- Accumulation of a sialic acid oligosaccharide complex secondary to a deficiency in the lysosomal enzyme neuraminidase
- Urinary excretion of sialic acid containing oligosaccharides is increased
- Sialydosis type 1
 - Cherry red spot-myoclonus syndrome
 - Visual deterioration
 - Myoclonus
- Sialydosistype 2
 - Infantile
 - Juvenile
 - · Cherry red spots, myoclonus, somatic involvement, coarse facial features
 - Lymphocytes show vacuoles in the cytoplasm
 - Liver biopsy
 - Cytoplasmic vacuoles

CASE REPORT 1

A 19 months old child from Rajasthan came with a history of apparently normal growth and development upto 5 months of age. There after the child developed gradual distension of abdomen, unable to hold neck and unable to recognized her parents.

On examination:

- Liver and spleen were enlarged by 10 and 12 cm respectively.
- Blood examination showed reduced haemoglobin.
- · All the deep reflexes were diminished and there was hypotonia in all four limbs.
- · Bone marrow examination showed infiltration of foamy cells in macrophages.
- Fundus examination revealed cherry red spot in the macula of both eyes. Hence, this characteristic is seen in many types of storage diseases so this cannot simply confirm the presence of Niemann-Pick.

Expected Diseases according to above information- 1) Gaucher Disease

- 2) Tay Sachs Disease
- 3) Hurler's syndrome
- 4)Niemann-pick disease
- Further Enzymatic and gene studies revealed the presence of Niemann-Pick Type A disease. In gene study, gene expression was studied.

CASE REPORT 2

An Afghan girl was growing normally till 1 year of age. Later on, hepatomegaly with developmental delay was observed. Parents also noticed unexplained frequent falls without any sign of seizure.

She was the 5th sibling with one elder sister dying of respiratory failure and hepatosplenomegaly at the age of 5 years. Two elder brothers and one sister were normally growing till that date.

On examination: At the age of 4 yrs, she had

- neurological regression
- hypotonia
- facial dyskinesia
- Bone-marrow examination revealed presence of storage cells

Expected Diseases related to these symptoms- 1) Gaucher Disease

2) Niemann-Pick Disease

Similarities and Dissimilarities Of Cerebrosides and Gangliosides

Similarities Of Cerebrosides and Gangliosides

- Both are Glycolipids containing Carbohydrate moieties.
- Both contain Sphingosine/Ceramide in their structures.
- Both are richly present in Nervous tissue.

Dissimilarities Of Cerebroside and Gangliosides.

S.No	Cerebrosides	Gangliosides
1	Structurally Simple Ceramide linked with Glucose or Galactose.	Structurally complex Ceramide linked to Glucose, Galactose, NAGalactosamine, and NANA
2	Occur in White matter of brain and Myelin Sheaths.	Occur in Grey matter of brain and Ganglions .
3	Types: Glucocerebrosides Galactocerebrosides	Types: GM1,GM2, GM3,GM4
4	Function : Conducts nerve impulse	Transfer Biogenic Amines
5	Related Disorder: Gauchers Disease www.FirstRa	Related Disorder: Tay Sachs Disease

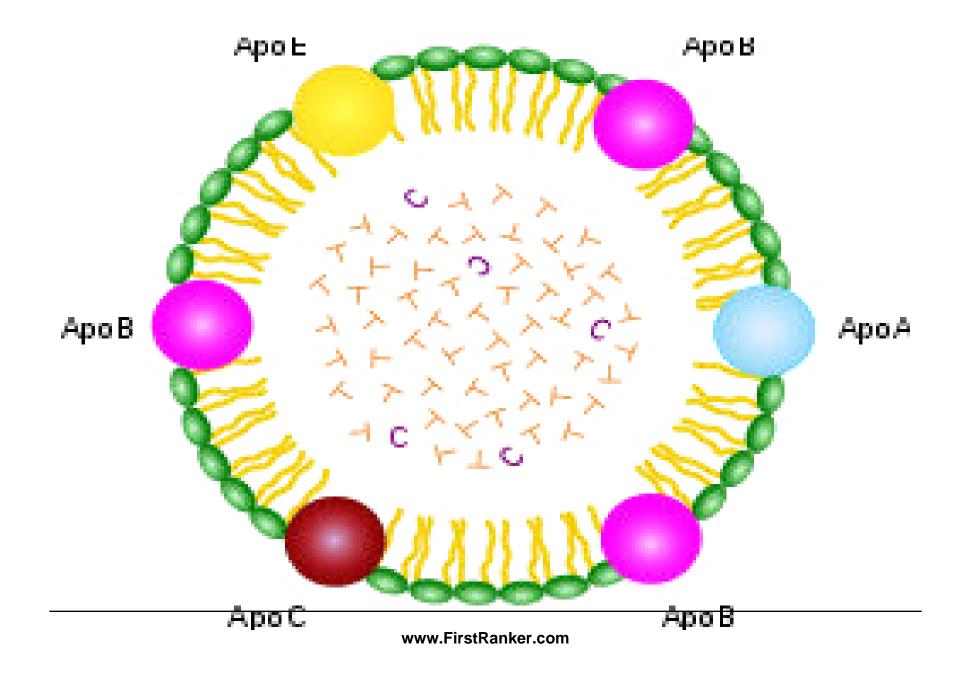
Lipoproteins

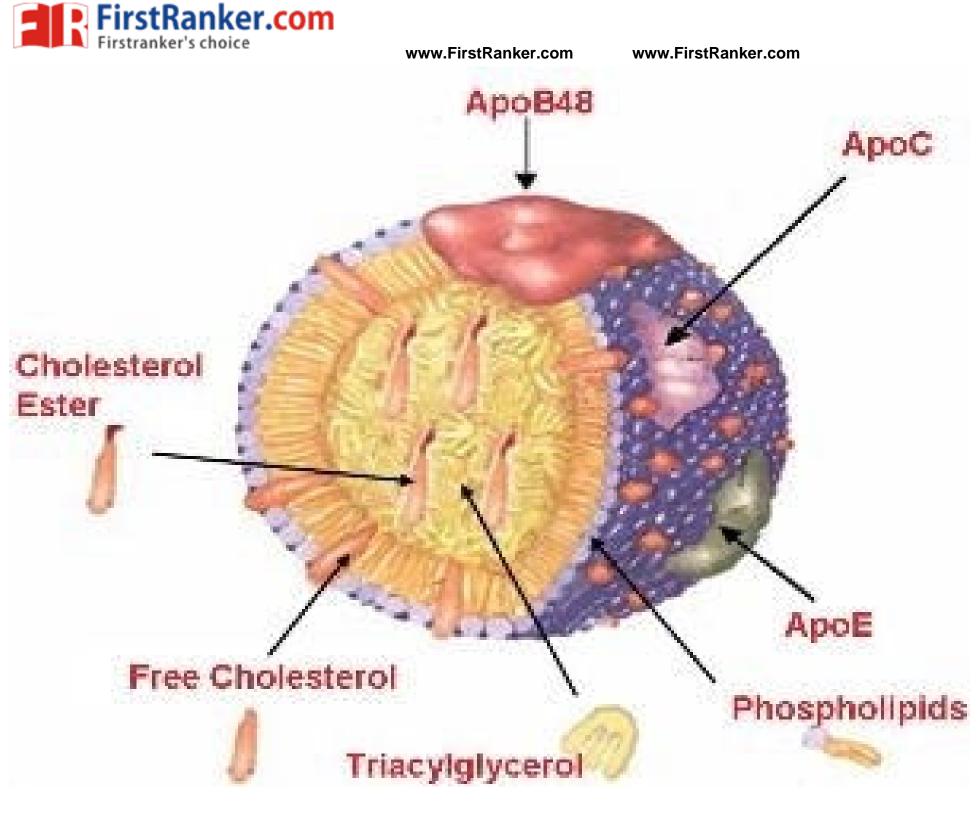
Lipoproteins

 Lipoproteins are types of Compound Lipids / Conjugated Proteins.

- Lipoproteins are macromolecules formed by aggregation of:
- Lipids (Neutral and Amphipathic)
- Proteins (Apoprotein) in the human body.

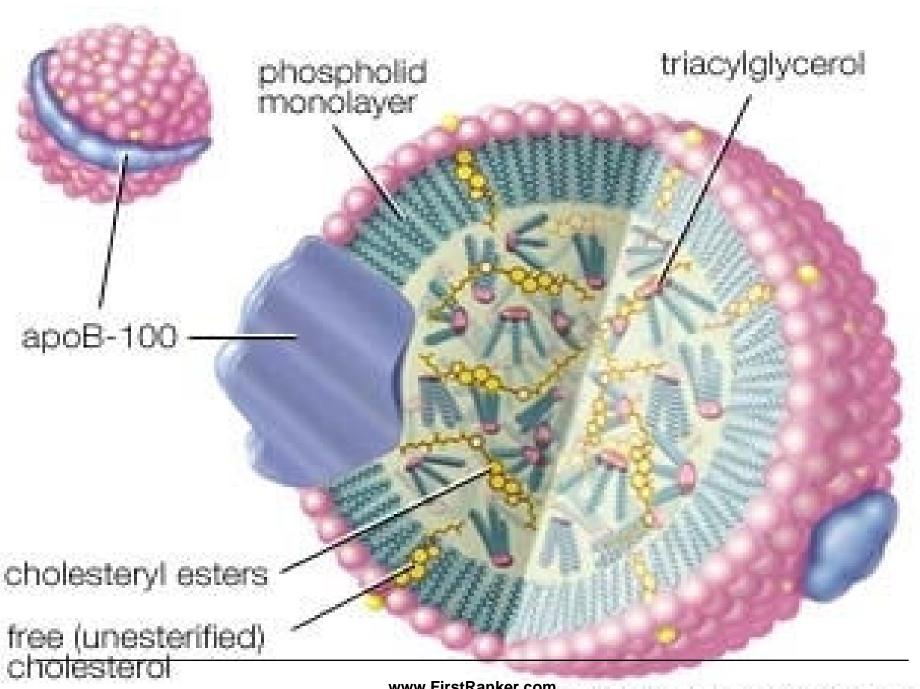
 Lipoproteins acquire polarity (Hydrophilic Property)

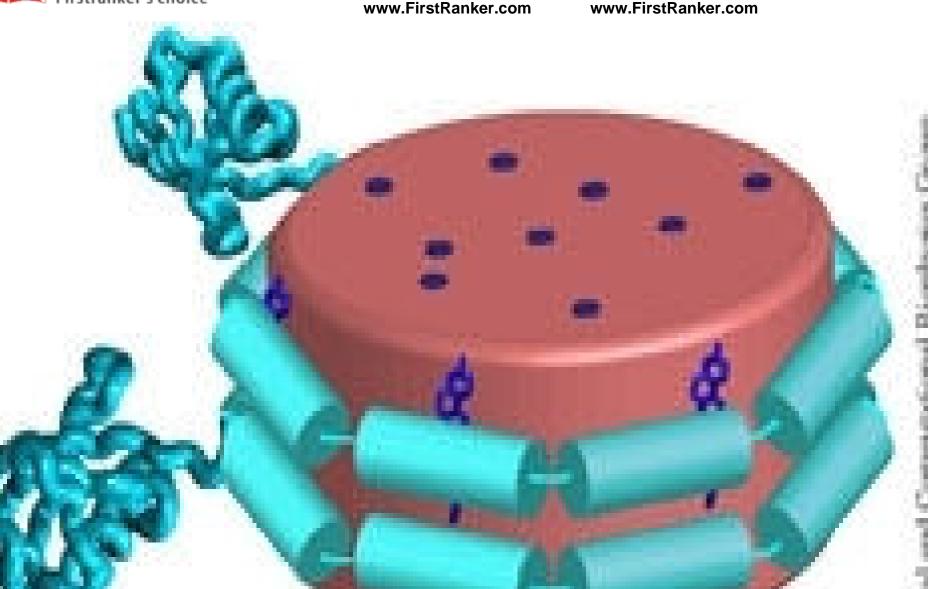



 Lipoprotein serve as vehicles for transportation of Neutral and Amphipathic Lipids through aqueous media blood and lymph.

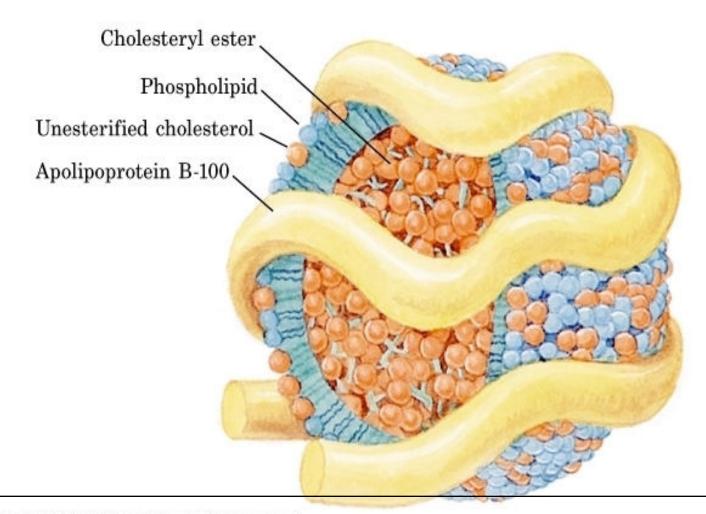
- Lipoproteins are biosynthesized within the cells of tissues.
- By aggregation of various forms of Lipids and Apoproteins.

Structure Of Lipoproteins



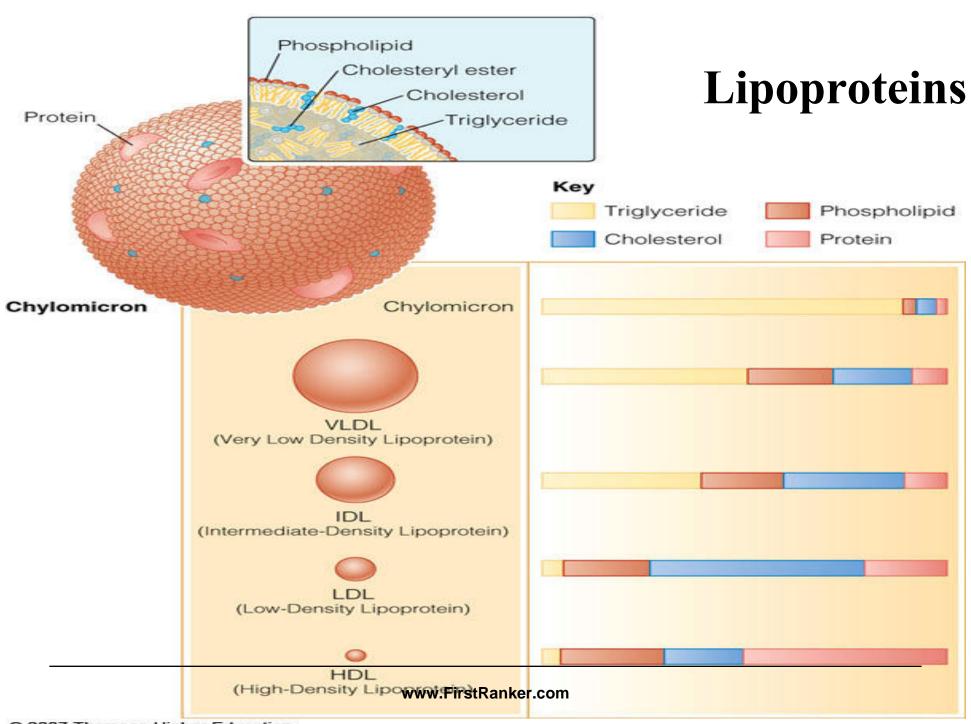

Structure of Lipoproteins

- The non polar /hydrophobic Lipids TAG and Cholesterol Ester are gathered centrally to form the core of LipoProtein particle.
- At the periphery of Lipoprotein are Apoprotein and Amphipathic Lipids viz Phospholipids and Cholesterol.


- The Apoprotein and polar groups of Amphipathic Lipids impart hydrophilic property to Lipoprotein molecules
- This helps in transportation of Lipids
- From site of origin to site of utilization through blood.

Discoidal HDL

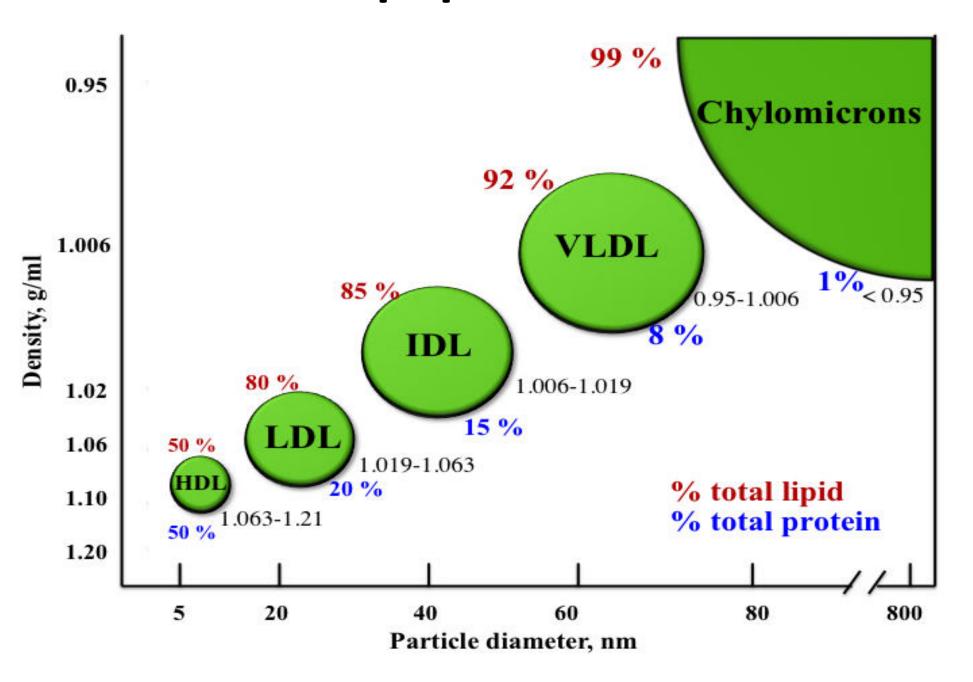
Cholesterol Transported as Lipoprotein Complex (LDL)


Functions Of Lipoproteins

- Lipoproteins serve as a vehicle in transportation of non polar Lipids
- From the site of its biosynthesis to the site of utilization through aqueous media of blood or lymph.

Types Of Lipoproteins

- Depending upon the composition and other properties following are the types of Lipoproteins:
 - –Chylomicrons (CM)
 - -Very Low Density Lipoprotein (VLDL)
 - -Low Density Lipoproteins (LDL)
 - -High Density Lipoproteins (HDL)
 - -Free Fatty acid -Albumin



ng density

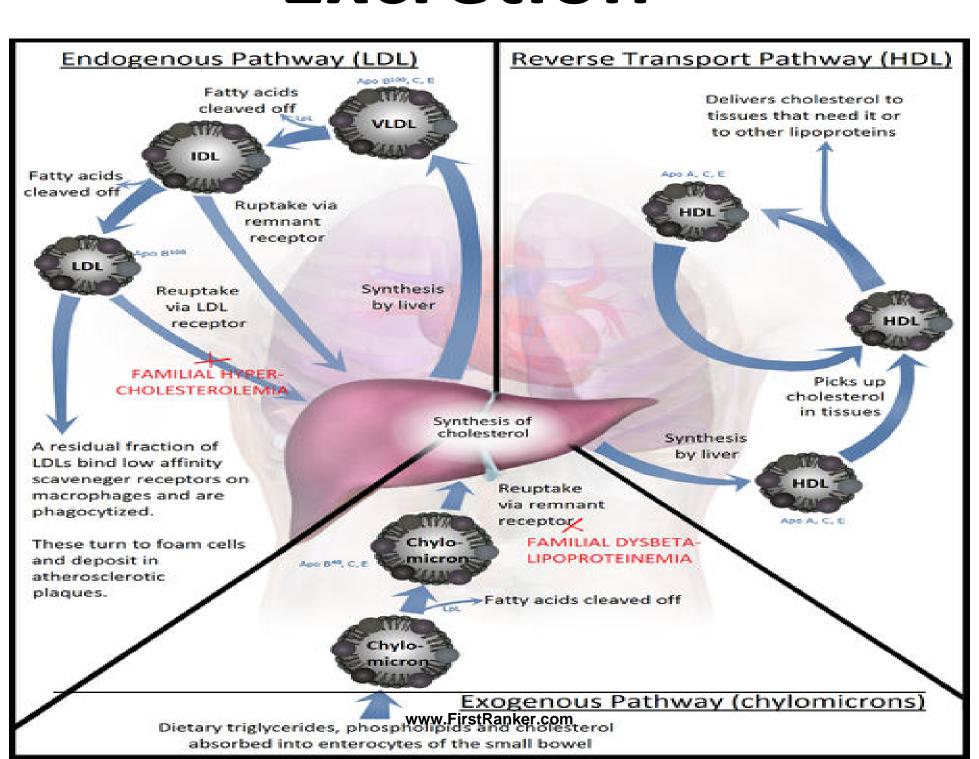
Increasin

Lipoproteins

Types of Lipoprotein

(all contain characteristic amounts TAG, cholesterol, cholesterol esters,

phospholipids and Apoproteins – NMR Spectroscopy)						
Class	Diameter (nm)	Source and Function	Major Apoliproteins			
Chylomicrons (CM)	500 Largest	Intestine. Transport of dietary TAG	A, B48, C(I,II,III) E			
Very low density lipoproteins (VLDL)	43	Liver. Transport of <u>endogenously</u> synthesised TAG	B100, C(I,II,III), E			
Low density lipoproteins (LDL)	22	Formed in circulation by partial breakdown of IDL. Delivers cholesterol to peripheral tissues	B100			
High density lipoproteins (HDL)	8 Smallest	Liver. Removes "used" cholesterol from tissues and takes it to liver.	A, C(I,II,III), D, E			
(1.100)	www.Firs	Donates apolipoproteins to tRanker.com and VLDL				


www.FirstRanker.com

This is a second of the second		www.FirstRanker.com	www.FirstRan	iker.com
Features	Chylomicrons	VLDL	LDL	HDL
Site of Synthesis	Small Intestine	Hepatocytes Liver -80% Intestine -20%	Blood Circulation From VLDL	Nascent HDL Liver
Lipids %	99%	92%	80%	50%
Protein %	1%	8%	20%	50%
Rich Lipid Form	TAG Exogenous	TAG Endogenous	Cholester ol	Phospholipids
Associate d Apoprote in	Apo B48, Apo CII ,Apo E	Apo B100 ,Apo CI,Apo CII,Apo E	Apo B100, Apo CI, Apo CII and Apo E	Apo A I, Apo A II Apo C I, Apo C II Apo D & Apo E
Transport From	Dietary Lipids Intestine	Liver	Liver	Extrahepatic Tissues
Transport To	Liver	Extrahepatic Tissues	Extrahepa tic Tissues	Liver

HDL Has Scavenging Role OR Reverse Transport of Cholesterol

HDL Is Associated With Enzyme LCAT Responsible For Cholesterol Esterification And Its Excretion

 HDL has scavenging role with protective mechanism.

 HDL Transports Cholesterol from Extrahepatic tissues back to Liver for its excretion.

• HDL reduces risk of Atherosclerosis.

 HDL clears the body Lipids and do not allow accumulation of Lipids in blood.


- Thus when the levels of HDL are within normal range
- Cholesterol associated with HDL is termed as
 Good Cholesterol

- Based on Electrophoretic pattern the Lipoproteins are termed as:
 - **-LDL:** Beta Lipoproteins
 - -VLDL: Pre Beta Lipoproteins
 - -HDL: Alpha Lipoproteins

Classification of plasma Lipoproteins according to their electrophoretic mobility

Electrophoretic Pattern of Serum Lipoproteins

α-lipoprotein (HDL)

Pre-β-Lipoprotein (VLDL)

β-lipoprotein (LDL)

CM

	· -				
Lipoprotein class	Density (g/mL)	Diameter (nm)	Protein % of dry wt	Phospholi pids %	Triacyl- glycerols % of dry wt
HDL	1.063- 1.21	5 - 15	50	29	8
LDL	1.019 - 1.063	18 - 28	25	21	4
IDL	1.006- 1.019	25 - 50	18	22	31
VLDL	0.95 - 1.006	30 - 80	10	18	50
Chylomicrons	< 0.95	100 - 500	1 - 2	7	84
		www.FirstRank	er.com		

www.FirstRanker.com

2% Protein

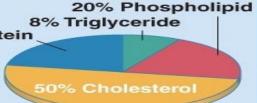
www.FirstRanker.com

- Formed in the gut after a meal
- Released into the lymph system and then into the blood
- · Largest of the lipoproteins, with the lowest density

 Taken up by the liver once triglycerides are removed

18% Phospholipid

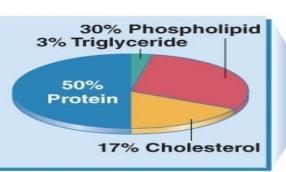
5% Cholesterol


8% Phospholipid

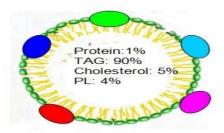
Transports endogenous lipids, especially triglycerides, to the various tissues of the body

LDL (Low-density lipoprotein)

22% Protein


 Formed in blood from VLDL (transformation from VLDL to LDL occurs as the triglycerides are removed from the VLDL)

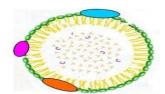
Transports cholesterol to the cells of the body


HDL (High-density lipoprotein)

- · Synthesized in liver and released into the blood
- Transported by the blood throughout the body, picking up free cholesterol

Transports cholesterol from tissues back to the liver

@ 2011 Pearson Education, Inc.


Lipoprotein type: Chylomicron

Density: <0.950 g/mL Diameter: 80-1000 nm

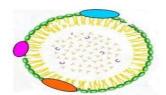
Major lipids: dietary triacylglycerols Apolipoproteins: B48, A1, A2, C, E

Protein: ~1%

Triglyceride: ~90% Cholesterol: ~5% Phospholipids: ~4%

Lipoprotein type: VLDL

Density: 0.950-1.006 g/mL


Diameter: 30-80 nm

Major lipids: endogenous triacylglycerols

Apolipoproteins: B100, C, E

Protein: ~10%

Triglyceride: ~65% Cholesterol: ~13% Phospholipids: ~13%

Lipoprotein type: IDL

Density: 1.006-1.019 g/mL

Diameter: 25-30 nm

Major lipids: endogenous triacylglycerols

and cholesterol

Apolipoproteins: B100, C, E

Protein: ~18% Triglyceride: ~34%

Cholesterol: ~22% Phospholipids: ~22%

Lipoprotein type: LDL

Density: 1.019-1.063 g/mL

Diameter: 20-22 nm

Major lipids: cholesterol and cholesteryl

ester

Apolipoproteins: B100

Lipoprotein type: HDL Density: 1.063-1.090 g/mL

Diameter: 9-15 nm

Major lipids: cholesteryl ester and

phowww.#ipstRanker.com Apolipoproteins: A1, A2, C, E

Protein: ~20% Triglyceride: ~10% Cholesterol: ~45% Phospholipids: ~23%

Protein: ~50% Triglyceride: ~20% Cholesterol: ~18%

Phospholipids: ~30%

www.FirstRanker.com

www.FirstRanker.com

	CM	VLDL	LDL	HDL
Density (g/ml)	< 0.94	0.94-1.006	1.006-1.06	3 1.063-1.210
Diameter (Å)	6000- 2000	600	250	70-120
Total lipid (wt%) *	99	91	80	50
Triacylglycerol	85	55	10	6
Cholesterol esters	3	18	50	40
Cholesterol	2	7	11	7
Phospholipid	8	20	29	46
Apoprotein %	1	9 2	20 5	50

Fatty acid compositions (wt% of the total) in the main lipids of human Lipoprotein

	Triacy	lglyce	rols	Cholesterol Esters		Phos	Phospholipids		
Fatty acid	VLDL	LDL	HDL	VLDL	LDL	HDL	VLDL	LDL	HDL
16:0	27	23	23	12	11	11	34	36	32
18:0	3	3	4	1	1	1	15	14	14
18:1	45	47	44	26	22	22	12	12	12
18:2	16	16	16	52	60	55	20	19	21
20:4 (n-6)	2	5	8	6	7	6	14	13	16
				www.FirstF	Ranker.com				

The main properties of the Apoproteins.*

The main properties of the Apoproteins.						
Apoprotein	Molecular weight	Lipoprotein	Function			
Apo A1	28,100	HDL	Lecithin:cholesterol acyltransferase (LCAT) activation. Main structural protein.			
Apo A2	17,400	HDL	Enhances hepatic lipase activity			
Apo A4	46,000	CHYLOMICRON(CM)				
Apo AV(5)	39,000	HDL	Enhances triacylglycerol uptake			
Apo B48	241,000	CHYLOMICRON	Derived from Apo B100 – lacks the LDL receptor			
Apo B100	512,000	LDL, VLDL	Binds to LDL receptor			
Apo C1	7,600	VLDL, CM	Activates LCAT			
Apo C2	8,900	VLDL, CM	Activates lipoprotein lipase			
Apo C3	8,700	VLDL, CM	Inhibits lipoprotein lipase			
Apo D	33,000	HDL	Associated with LCAT, progesterone binding			
Аро Е	34,000	HDL	At least 3 forms. Binds to LDL receptor			
Apo(a)	300,000-800,000	LDL, Lp(a)	Linked by disulfide bond to apo B100 and similar to nlasminogen			

Disorders Of Lipoproteins

Disorders associated with Lipoprotein Metabolism

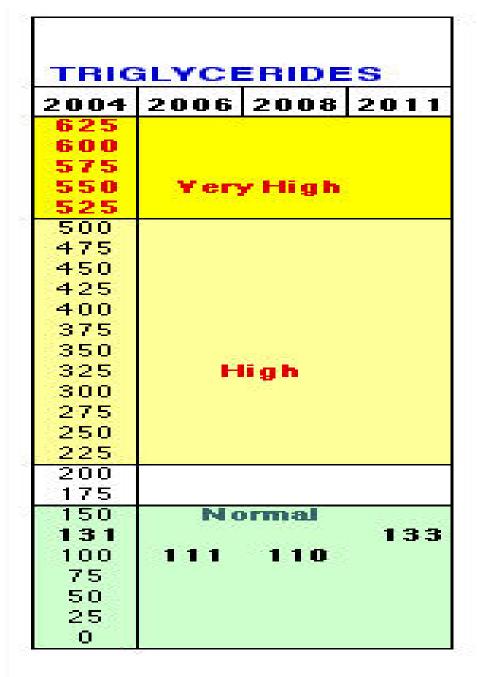
Hyper-Lipoproteinaemias :-

- Type-I: familial lipoprotein lipase deficiency.
- Type-II: familial hypercholesterolaemia.
- Type-III: familial dys-beta Lipoproteinaemia,
- Type-IV: familial hypertriglyceridaemia.
- Type-V: Combined hyperlipidaemias.

Hypolipo-proteinaemias:-

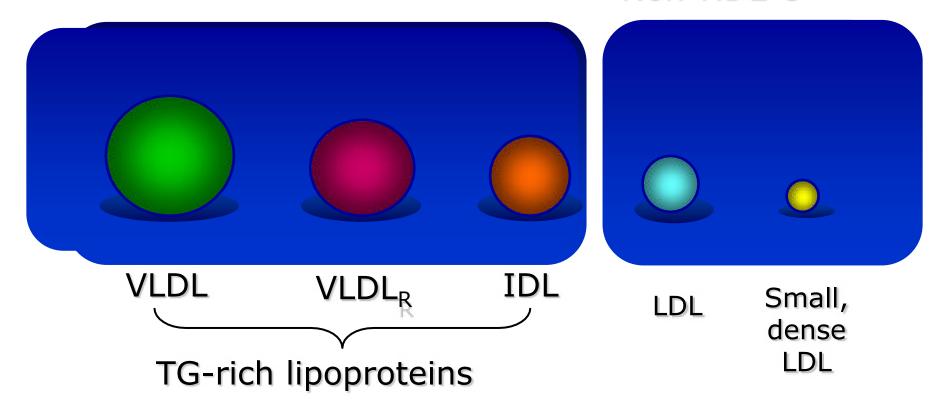
- A-beta- Lipoproteinaemia.
- Familial alpha-Lipoprotein deficiency (Tangier's disease)...

Table I Lipid levels (mg/DL) in human beings with known heart disease


Test	Desirable	Borderline	Undesirabl
Total cholesterol	< 200	200-240	>240
HDL cholesterol	>45	35-45	< 35
Triglycerides	< 200	200-400	>400
LDL cholesterol	<130	130-160	>160
Cholesterol/HDL	< 4.5	4.5-7.5	>5.5
LDL/HDL	www.F)rstRank	er.com 3.5	>5.0

- Defect in Lipoprotein metabolism leads to Lipoprotein disorders:
 - Hyperlipoproteinemias
 - Hypolipoproteinemias

TOTAL		The second second	LDL (bad) CHOLESTEROL		HDL (good) CHOLESTEROL		
				100000000000000000000000000000000000000			
2004 390	2006 2008 2011	2004 320	2006 2008 2011	2004	2006 2008 201		
380		310		130			
370		300		125			
360		290		120			
350		280		115			
340		270		110			
330		260		105			
320		250		100			
310	Yery High	240		95			
300	101) 111911	230		90			
290		220	Very High	85			
280		210	(A. A. A. & A. A. A. & A. A.	80			
270		200		75			
260	High	190		70	Protective		
250		180	High	65			
240		170	V50000000	60			
230		160		55			
220		150		49	100.00		
210		140		45	44 46 45		
196	198 195	130	131	40	Version Committee (Co.)		
190	188	120	119 123	35	High Risk		
180	Good	110	Good	30	建 等		
170		100*		25			
160	47-20-20-20-20-20-20-20-20-20-20-20-20-20-	90	17 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 2	20			
150	Yery Good	80	Yery Good	15			
140		70*		10			
130		60		5			
120		50		0			
1:10		40 w	ww.FirstRanker.com				


Yellow is Bad	
White is Borderline	3
Green is Good	

TOTAL/ HDL Cholesterol Ratio						
7.0 6.5 6.0	Yery Hig	h				
5.5 5.0	High	699				
4.5	4.5	4.3				
4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5	Good					

Lipoproteins Atherogenic Particles

MEASUREMENTS:

Apolipoprotein B Non-HDL-C

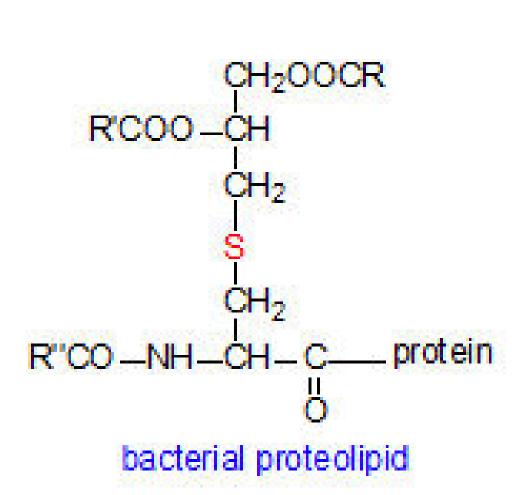
- Defect in the receptors of Lipoproteins on specific tissues
- Leads to retention of specific Lipoproteins in the blood circulation.

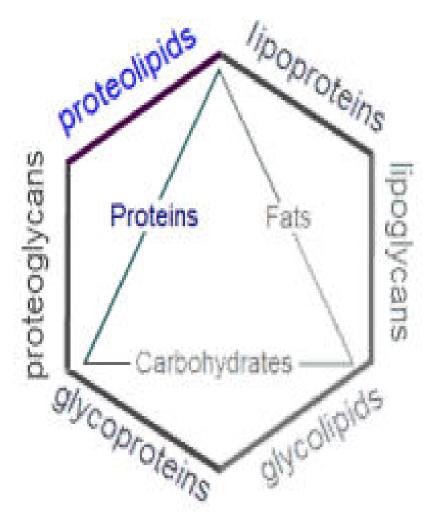
 Abnormal high levels of LDL in blood is due to LDL receptor defect on extrahepatocytes bad to body.

- The Cholesterol associated to high LDL levels is said to be bad Cholesterol.
- This increases the risk of Atherosclerosis, Ischemia, MI and Stroke.

- Recently evidenced high levels of blood HDL are also bad to body.
- This increases the risk of Atherosclerosis, Ischemia, MI and Stroke.

Proteolipids/ Lipophilin


Proteolipids/ Lipophilin


- Proteolipids are compound lipids which have more content of Proteins than Lipids.
- Proteolipid is a transmembrane domain protein bound with Lipids.

Occurrence Of Proteolipids

- Proteolipids are structural Lipids
- Present on the extracellular side of the membrane.
- Proteolipids are also present in Myelin Sheath.

Miscellaneous Lipids

Miscellaneous Lipid Eicosanoids

Eicosanoids are
 Classified under
 Miscellaneous Lipids.

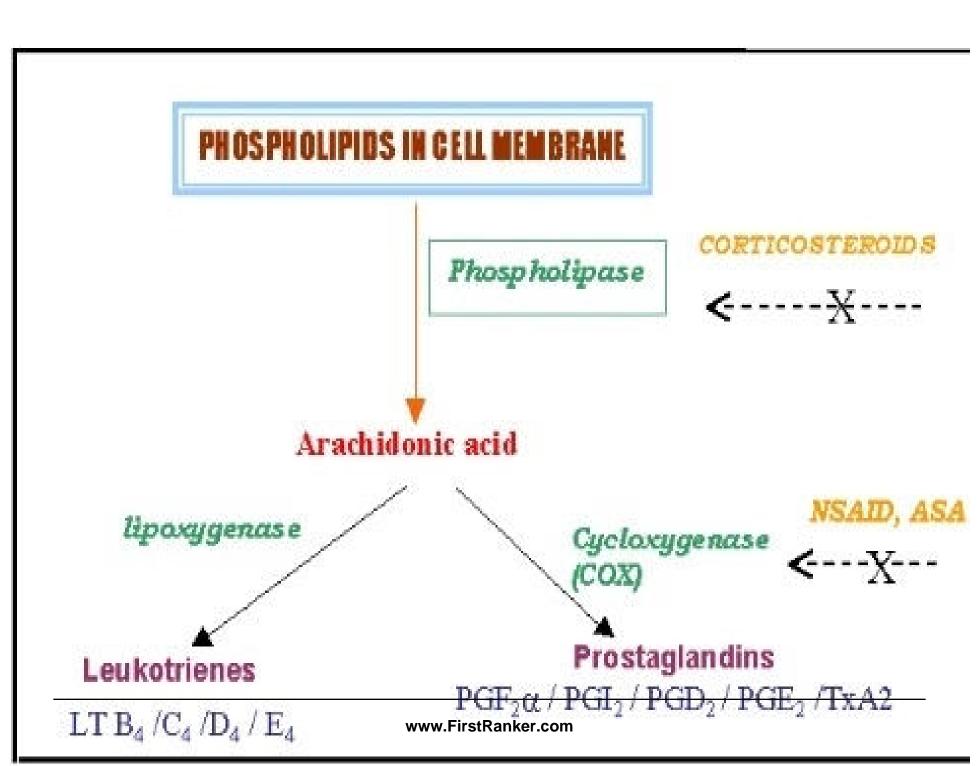
Eicosanoids is a generic term collectively used for

 Biologically active 20 carbon(Eicosa) Lipid like compounds

Name Of Eicosanoids

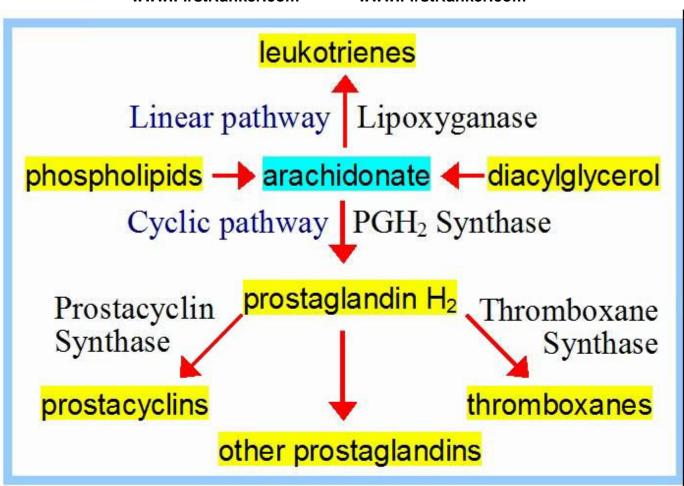
- Eicosanoids is a Generic term for the 20 Carbon related compounds like:
 - Prostaglandins (PGs)
 - II. Prostacyclins (PGI2)
 - III. Thromboxanes (TX)
 - IV. Leukotrienes (LT)
 - V. Lipoxins (LX)
 - VI. Resolvins
 - VII. Eoxins

Biosynthesis Of Eicosanoids


Eicosanoids are derivatives of Nutritional Essential Fatty acid/PUFAs.

- Eicosanoids are biosynthesized in the body from PUFAs:
 - 1. Mostly from Arachidonic acid/Eicosatetraenoic acid (PUFA)/Omega 6 Fatty acid
 - 2. Minorly from Timnodonic acid/Eicosapentaenoic / Omega 3 Fatty acid

During Eicosanoid Biosynthesis Mostly


- Arachidonic acid is released by Phospholipids Viz: Lecithin/PIP3
- By Phospholipase A2 activity

Two major pathways of eicosanoid metabolism.

Cyclic pathway:

Prostaglandin H₂ Synthase catalyzes the committed step in the "cyclic pathway" that leads to production of prostaglandins, prostacyclins, & thromboxanes.

Different cell types convert PGH₂ to different compounds.

- Eicosanoids has very short half life
- From seconds to few minutes

Classification Of Eicosanoids

- Prostanoids: Obtained by Cycloxygenase System:
 - Prostaglandin
 - Prostacyclins
 - Thromboxanes
- Leukotrienes and Lipoxins are obtained by Lipoxygenase System

Prostaglandins are Derivative of Arachidonic acid

(a) Arachidonic acid

(c) Thromboxane B₂

(b) Prostaglandin E,

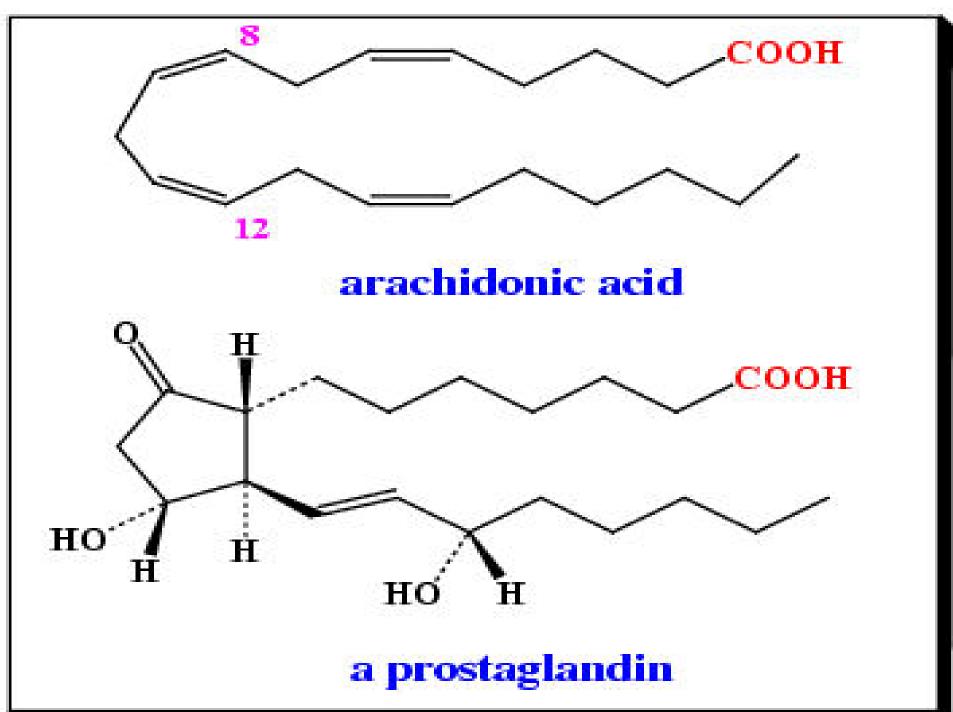
(d) Leukotriene B₄

1. Prostaglandins (PGs)

- Prostaglandins are type of Eicosanoids.
- PGs also termed as Prostanoids
- Since they are obtained from parent compound Prostanoic acid

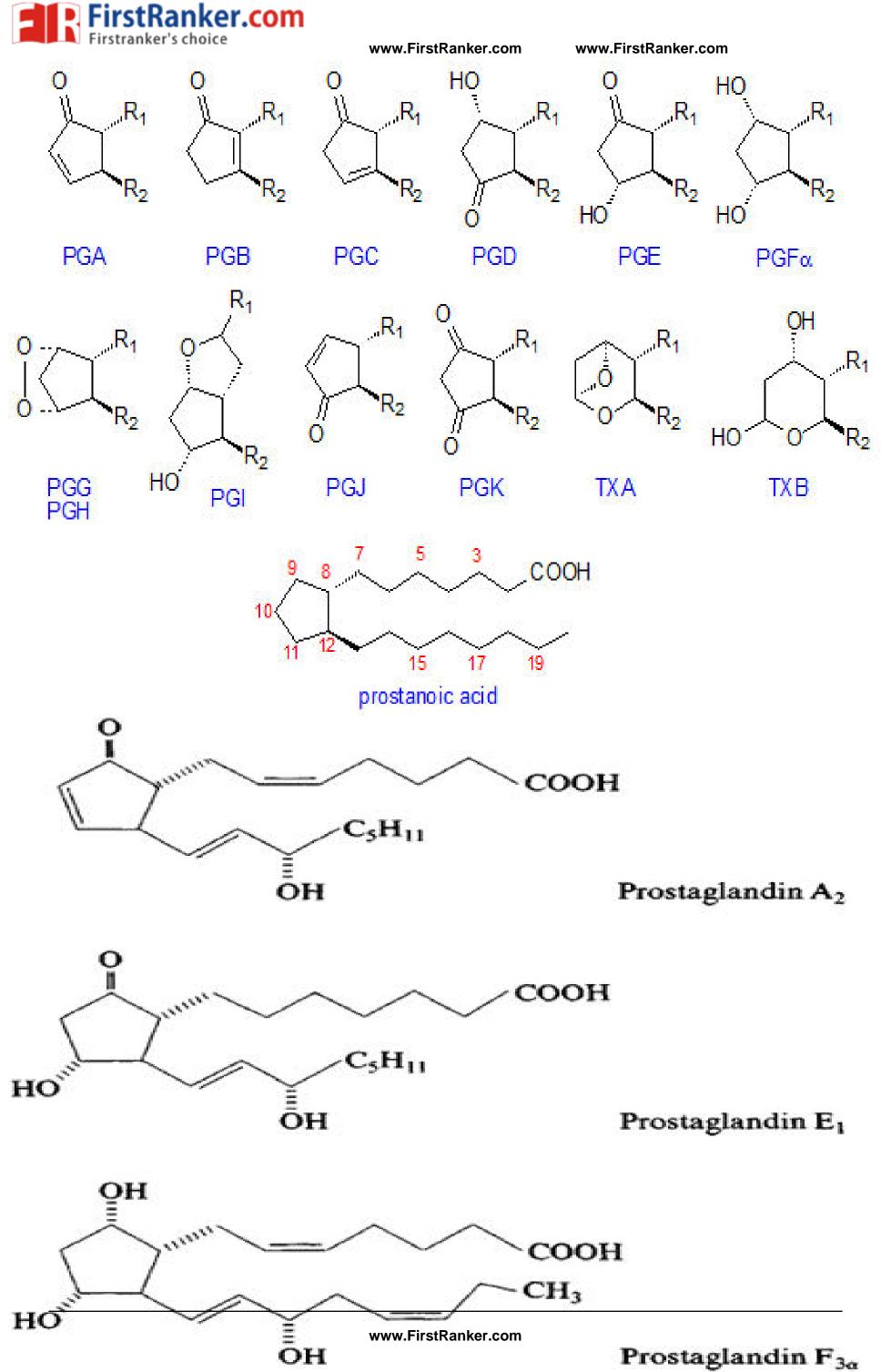
Biosynthesis Of Prostaglandins

Per day 1 mg of
 Prostaglandins are
 biosynthesized in human body.


 Prostaglandins are derived from Arachidonic acid by Cycloxygenase system.

- Phospholipid Lecithin releases
 Arachidonic acid
- Arachidonic acid is used for Prostanoic acid synthesis.
- Prostanoic acid then
 biosynthesizes Prostaglandin in
 human body.

Structure and Types Of PGs



- Prostaglandin structure is complex and possess:
 - –Cyclopentane ring
 - –Double bond
 - -Carboxylic and Hydroxyl groups

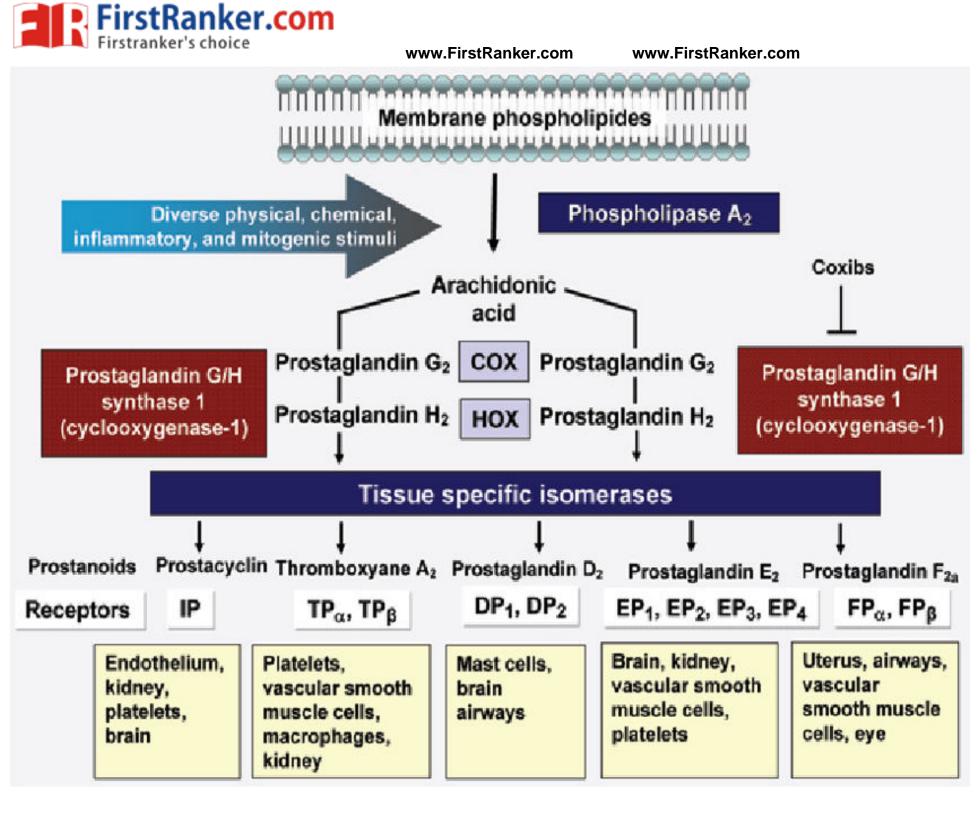
Prostaglandins contains

- Cyclopentane ring with Hydroxyl groups at C11 and C15
- Prostaglandins (PG) are of following Types:
 - -PG A
 - -PG B
 - -PG C
 - -PG D
 - -PG E
 - -PG F
 - -PG G
 - -PG H

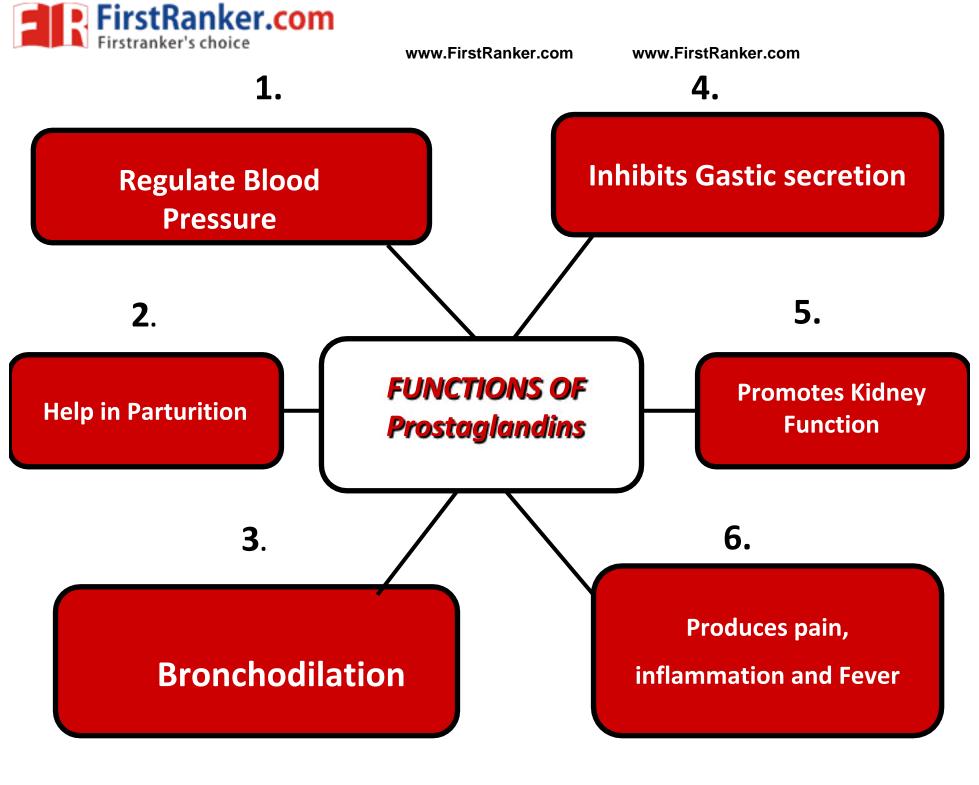
Occurrence/Distribution Of PGs

Occurrence Of PGs

- Prostaglandin was first seen in Prostatic secretion and Semen.
- Later it was found that
 Prostaglandins are ubiquitous
- Present all over in human body tissues.


Functions OF Prostaglandins

- Prostaglandins serve as Cell Signaling Agents/Local Hormones with.
 - -Paracrine in action (act on sites closely where they are produced/ neighboring cells).
 - —Autocrine in action that the sites where they are produced.



 PGs exert their function through G-Protein linked membrane receptors.

Prostaglandins have diverse functions on many tissues

- Action of one PG is different in different tissues.
- Sometimes PGs bring out opposing action in same tissue.

1. Role Of PGs In Blood Vessels

PGs Regulate Blood Pressure

- PG A and PG E are Vasodilators.
- PGs lowers the blood pressure by:
 - -Increasing blood flow and
 - —Decreasing vascular resistance in blood vessels.

 PGs are used Therapeutically in treating Hypertension.

Prostaglandin occur at Platelets Inhibits Platelet Aggregation and Thrombus formation

2. PGs Has Role in Uterus At The Time Of Parturition

PG naturally increases
 uterine contraction of smooth muscles which induces the delivery of baby.

- PGs can be therapeutically used as Abortificients during Medical Termination of Pregnancies (MTPs)
- PGs also arrests postpartum hemorrhage.

Prostanoids Therapeutic Uses

- Uterine Stimulation
- Carboprost (15-methyl PGF_{2α})
- Used by IM route for induction of abortion between 12th -20th gestational weeks
- Used at a dose of 250 µg every 1-3 hrs
- Dinoprost (PGF_{2α})
- Injection form for intra-amniotic administration
- Used to induce labour or abortion

3. Role Of Prostaglandins In Lungs

PGs in Lungs serve as
 Bronchodilators and
 Bronchoconstrictor of Lungs.

- –PG E-Bronchodilator
- -PG F- Bronchoconstrictor

 PG E is used in treatment of Bronchial Asthma.

4. Role Of Prostaglandin In GIT

 Prostaglandin in stomach increases its motility and inhibits gastric secretion of HCL.

 PG is used in treatment of gastric ulcers.

5. Role Of Prostaglandins in Kidneys

 PGs in Kidneys increases GFR and promotes urine formation and urine out put.

 Thus helps in removing waste out of the body.

PGs Regulate Sleep and Wake Process

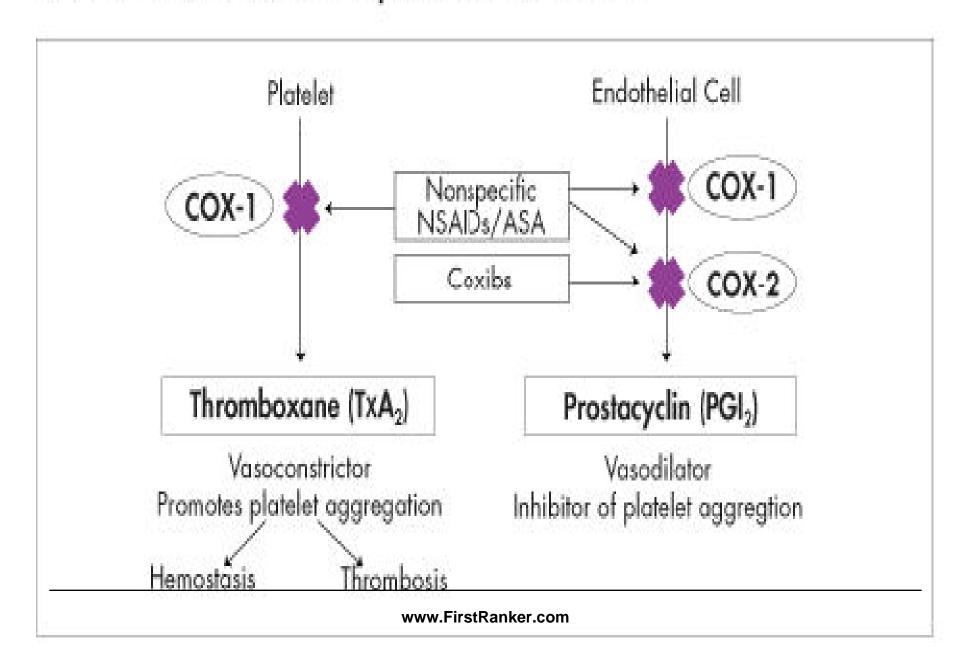
Use of PG D2 promotes Sleep

6.Effect Of PGs on Metabolism

- PGs Decreases Lipolysis (breakdown of TAG).
- PGs increases Glycogenesis.
- PGs promotes Steroidogenesis
 (Biosynthesis of Steroid hormones)
- PGs promotes mobilization of ionic
 Calcium from bones.

Production of PGs Promote Fever, Pain, Nausea Vomiting and Inflammation

Role Of PGs In Immunity And Inflammation


- Prostaglandins are produced in more amounts at the time of :
 - -Fever
 - -Pain
 - Nausea and Vomiting
 - -Inflammation
- Provide non specific immunity to body

 PGs are more produced ir inflammatory disorders like Rheumatoid Arthritis

- Drugs like NSAIDs Aspirin used in treating inflammatory disorders.
- Inhibits the Enzyme of Cycloxygenase system
- Which in turn inhibits the biosynthesis of Prostaglandins.

FIGURE 7. Effects of NSAIDs on platelets and endothelium.

Drug	Preparation	Use
Dinoprostone	Vaginal tab/gel	Induction labour Mid term abortion
Dinoprost	Intra amniotic inj	Mid term abortion
Carboprost	IM, Intra amniotic inj	Mid term abortion Control of PPH
Gemeprost	Vaginal pessary	Cervical priming in early pregnancy
Alprostadil	IV infusion, IV inj Intra cavernosal inj	Maintenance of a patent ductus arteriosus in neonates Erectile dysfunction
Misoprostol Enoprostil	Oral	Abortion & Peptic ulcer Peptic ulcer
Epoprostenol	IV infusion	Pulmonary hypertension
Latanoprostol	Topical	Glaucoma
iloprost	IM	Dec. infact size, when given IM after MI

TABLE 7-1 Prostaglandins		
Prostaglandin	Locations	Effects
$\overline{D_2}$	Airways, brain, mast cells	Bronchoconstriction
E ₂	Brain, kidneys, vascular smooth muscle cells, platelets	Bronchodilation
		 Gastroprotection Increased activity of GI smooth muscle
		Increased activity of all silloud induces Increased sensitivity to pain
		Increased body temperature
		Vasodilation
F ₂	Airways, eyes, uterus, vascular smooth muscle	Bronchoconstriction
		 Increased activity of GI smooth muscle
		 Increased uterine contraction (eg. menstrual cramps)
I ₂ (Prostacyclin)	Brain, endothelium, kidneys, platelets	 Decreased platelet aggregation
		Gastroprotection
		 Vasodilation
Thro mboxane A₂	Kidneys, macrophages, platelets, vascular smooth muscle www.FirstRanker.com	Increased platelet aggregation
		 Vasoconstriction

PHYSIOLOGICAL EFFECT

Inflammation

- PGs are natural mediators of inflammation
- PGE2 & PGE1

 induce signs of
 inflammation redness, heat (
 vasodilation),
 swelling, edema, etc

Pain & Fever

- Pyrogen stimulates PG synthesis & release of PGE2 in the Hypothalamus region of brain where temp is regulated.
- PGE2 can enhance the intensity & duration of pain caused by bradykinin & histamine.

Reproduction

- PGE2 and PGF2 have been used to induce parturition as well as to terminate pregnancy.
- Cytotec
- PGE series of PG may play a role in male infertility

PHYSIOLOGICAL EFFECTS

Peptic Ulegr

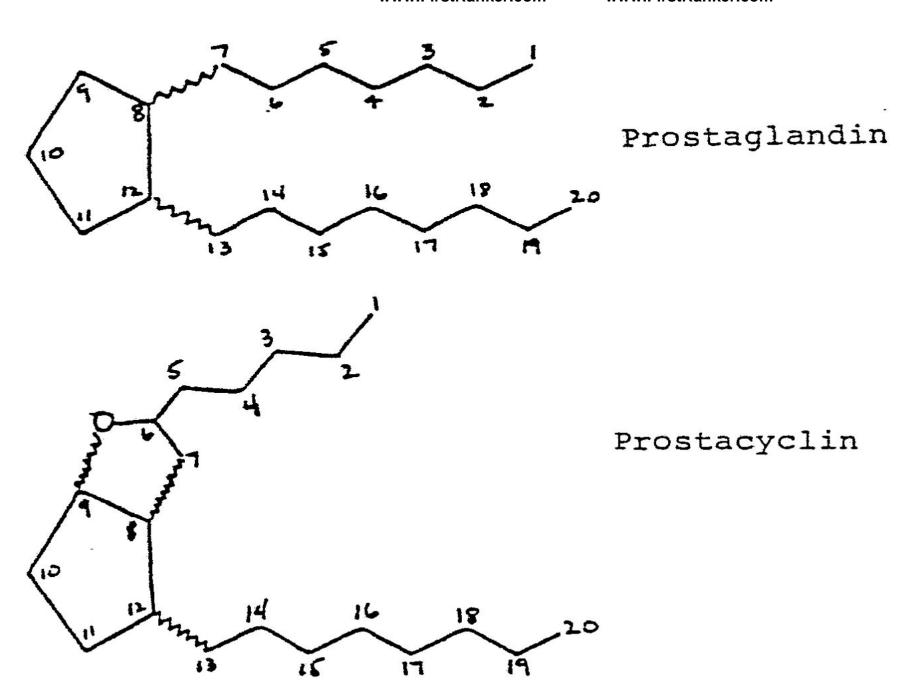
 Synthetic PGs have been useful in inhibiting gastric secretions in patients with gastric ulcers.

Regulation of Blood Pressure

- PGE, PGA & PGI2
 being vasodilators
 lower the systemic
 arterial pressure;
 increase local
 blood flow.
- Might help in treating
 Hypertension

Ductus Arteriosus

- PGE2 maintains the patency of DA prior to birth.
- If DA remains open after birth COO inhibitor like indomethacin can be given
- Infants with congenital abnormalities are administered PG to maintain blood flow.



2. Prostacyclins (PGI₂)

Prostacyclins (PGI₂)

- Prostacyclins are type of Eicosanoids/
 Prostanoids.
- Principally formed in vascular endothelium
- They are Platelet Aggregation Inhibition Factors
- Biosynthesized by enzyme Prostacyclin
 Synthetase.

Roles of Prostacyclins

- Prostacyclins are Vasodilators.
- Prostacyclins like Prostaglandins inhibit platelet aggregation.
- Prostacyclins prevent Thrombus/clot formation.

3. Thromboxanes (TX)

Thromboxanes (TX)

 Thromboxanes are also termed as Platelet Aggregating Factor (PAF).

 Thromboxanes are Prostanoids produced by Thrombocytes (platelets)

By Enzyme Thromboxy
 Synthase.

Structure Of Thromboxanes

 Thromboxanes possess a cyclic Ether in their structures.

$$R_1$$
 R_2
 R_2
 R_3
 R_4
 R_5
 R_5

Types Of Thromboxanes

- TX A and TX B are types of Thromboxanes.
- TXA2 is more prominent in human body.

Functions Of Thromboxanes

- Thromboxanes are vasoconstrictors.
- Thromboxanes enhances platelet aggregation.
- Thromboxanes favors blood clot formation during blood coagulation.

- Thromboxanes and Prostacyclins are antagonistic to each other balancing their activities.
- Increased Thromboxane activity results in Thrombosis.

4. Leukotrienes

Leukotrienes

- Leukotrienes are type of Eicosanoids
- Biosynthesized through Lipoxygenase system in Leukocytes.

Leukotrienes are a family of Eicosanoid

 They are Inflammatory mediators produced in leukocytes.

Occurrence Of Leukotrienes

 Early discovery of Leukotrienes was in Leukocytes.

- Leukotrienes are also produced and present in.
 - -Mast cells
 - -Lung
 - -Heart
 - -Spleen

Structure And Types Of Leukotrienes

LEUKOTRIENE E4 www.FirstRanker.com

LEUKOTRIENE D4

Leukotrienes Structure and Types

- Leukotrines are Hydroxy derivatives possessing conjugated Trienes.
 - Types of Leukotrienes:
- LTB4, LTC4, LTD4 and LTE4

Effect Of Leukotrienes

- Leukotrienes are components of Slow Reacting Substances (SRS-A).
- SRS-A are released during Allergic reactions/Anaphylaxis.

Leukotrienes are 100-1000 times more potent than Histamine during allergic reactions.

LTB₄ is a potent
 chemotactic agent.

(chemical substance which mediates movement of cells).

- Leukotrienes by action are:
 - -Bronchoconstrictors
 - -Vasoconstrictors

- LTC₄, LTD₄ and LTE₄ are Slow Releasing Substance of anaphylaxis (SRS A),
- SRS-A causes fluid leakage from blood vessels to an inflamed area.

 Overproduction of Leukotrienes causes
 Asthmatic attacks
 /Anaphylactic shocks.

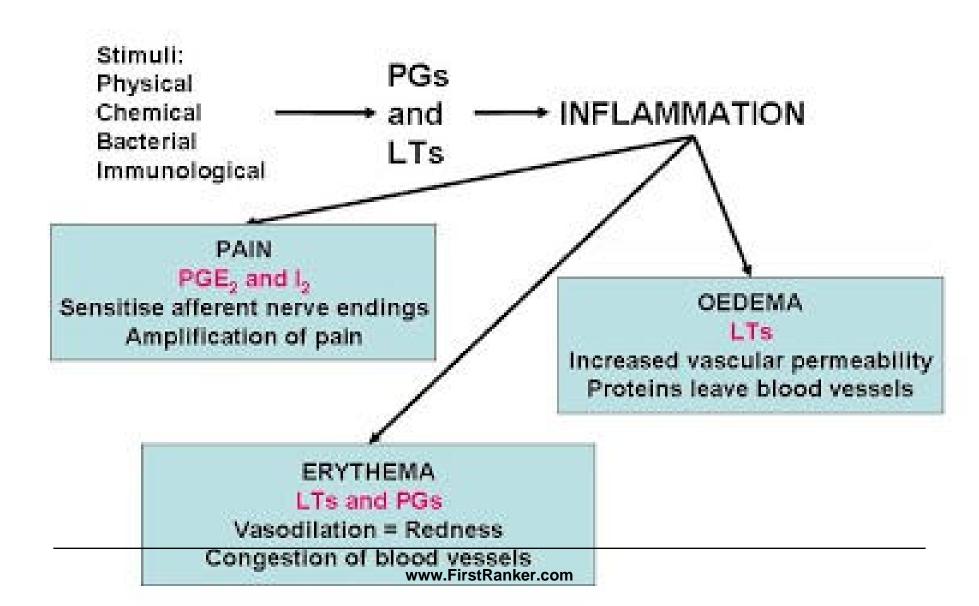
An Antiasthmatic drug
 Prednisone inhibits
 Leukotriene
 biosynthesis.

5.Lipoxins

Lipoxins

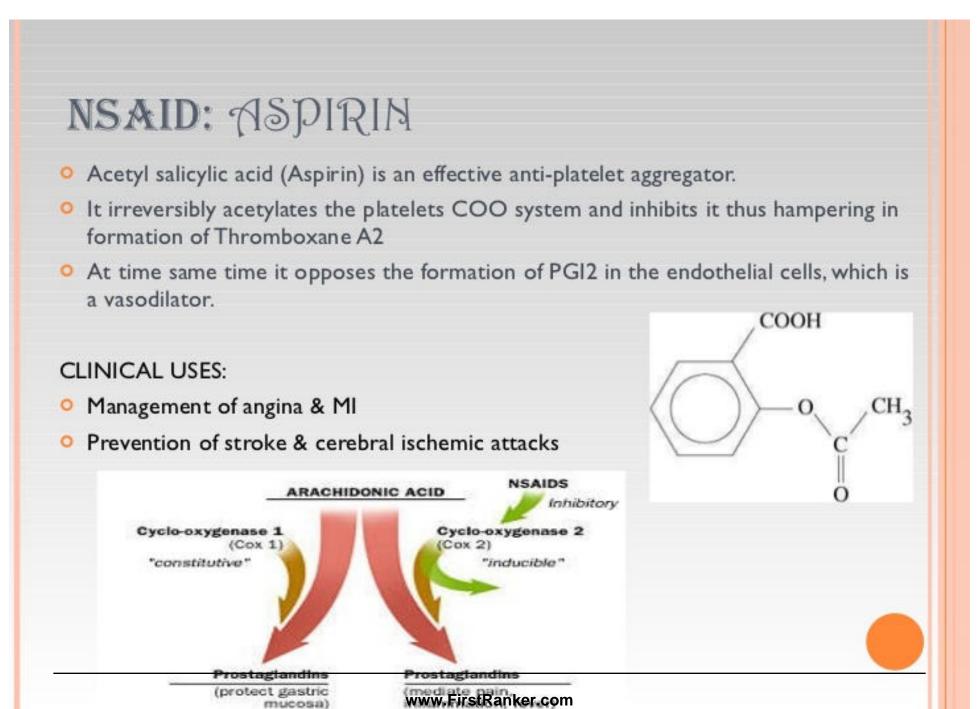
- Lipoxins are Eicosanoids produced in Leukocytes of human body.
- Lipoxins are:
 - –Vasoactive/Vasodilators
 - —Anti-inflammatory
 - -Immunoregulatory
 - -Chemotactic substances

Omega 6 and Omega 3 Derived Eicosanoids Are Opposite in Action

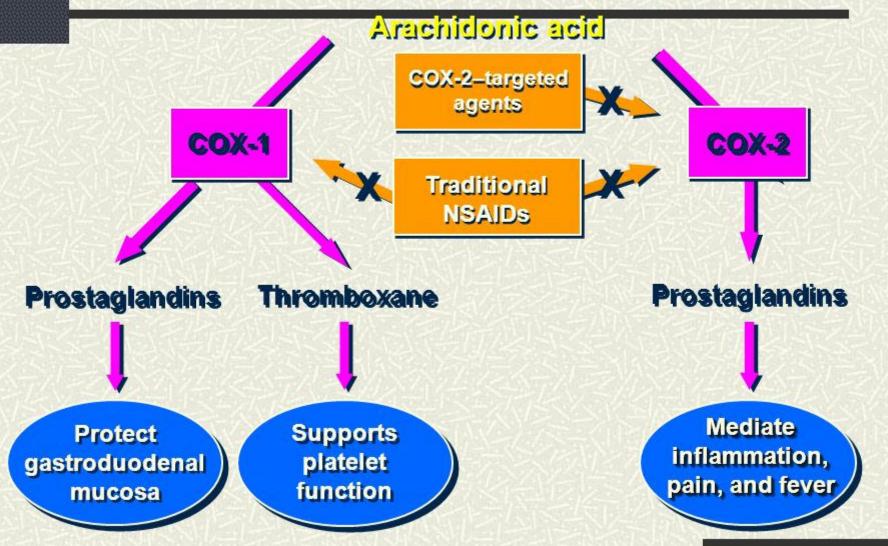

- Omega 6 Derived Eicosanoids
- Prostaglandins:
 - —Promotes Inflammation
- Omega 3 Derived Eicosanoids

Resolvins and Eoxins are:

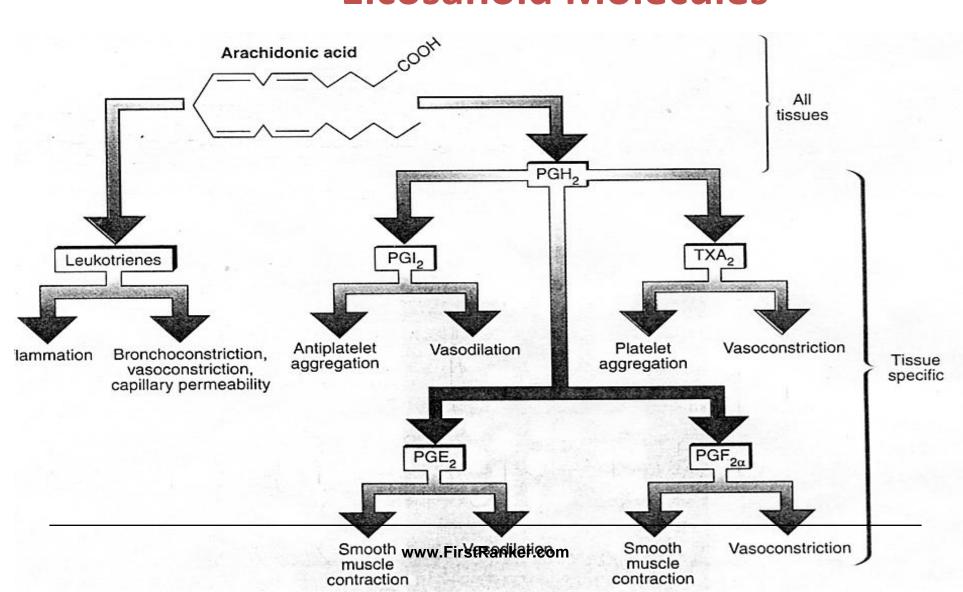
- -Anti Inflammatory
- -Anti Allergy
- Anti Hypertensive
- -Anti Cancer
- -Anti Atherosclerotic

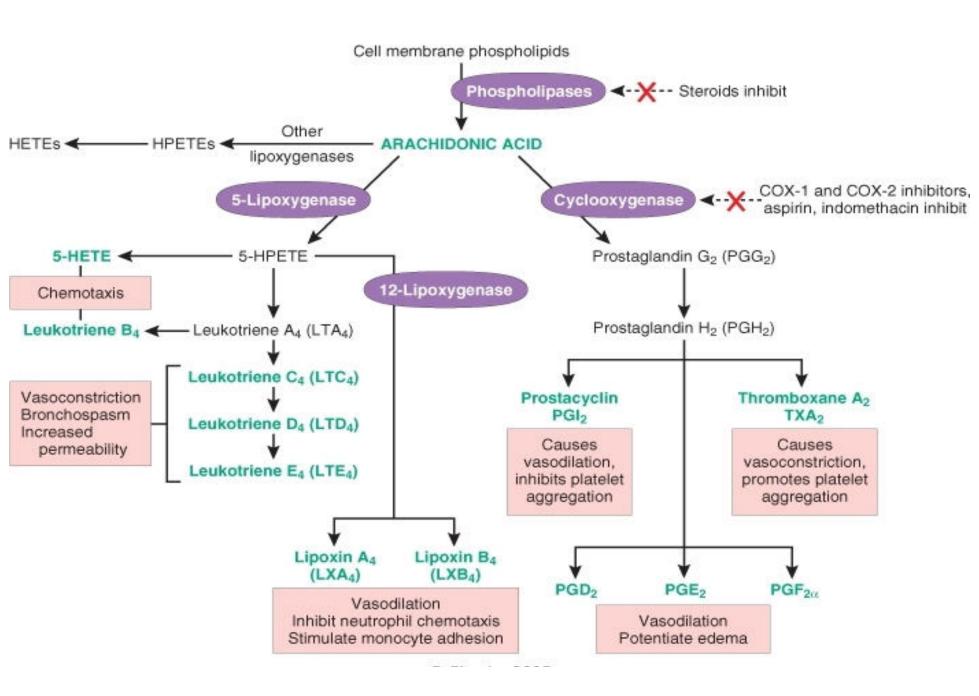


Effects of Eicosanoids



- Local pain and irritation
- Bronchospasm
- Gastrointestinal disturbances: nausea, vomiting, cramping, and diarrhea.




Mechanism of Action of Anti-inflammatory Agents

Biological Actions of Selected Eicosanoid Molecules

Amphipathic Lipids

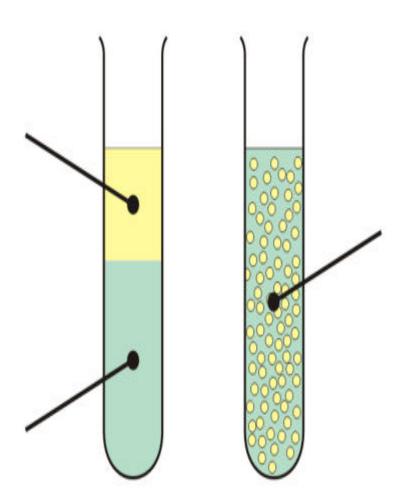
Examples Of Amphipathic Body Lipids

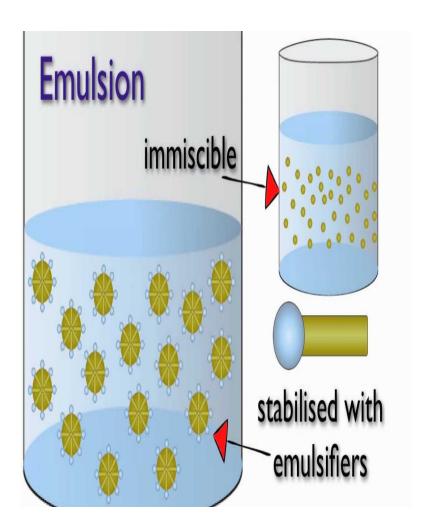
- Phospholipids
- Glycolipids
- Free Fatty acids
- Free Cholesterol

Features Of Amphipathic Lipids

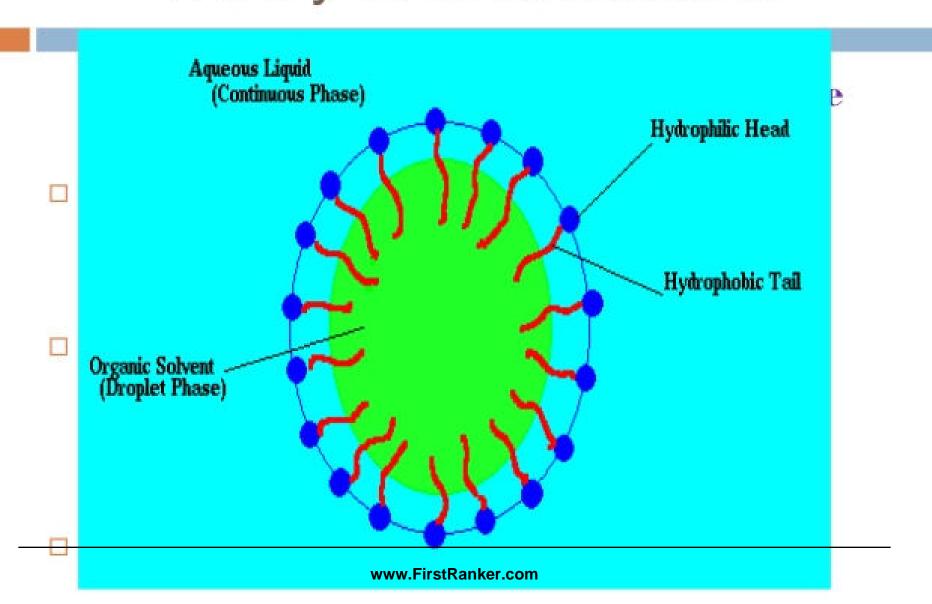
- Structure has both polar and non polar groups
- Partially soluble
- Orientation of groups:
 - —Polar group directed towards water phase
 - –Non polar group directed in oil phase/away from water.

Role Of Amphipathic Lipids


- Amphipathic Lipids have following biological Significances in forming:
 - -Biomembranes:


(Phospholipid bilayer, Glycolipids and Cholesterol)

- -Emulsions:
- In intestine PL help in Lipids Digestion
- -Micelles:
- -In intestine help in Lipids Absorption
- -Lipoproteins:
- For transport of nonpolar/neutral Lipids
- Liposomes:
- -Agents for Drug / Gene carrier



Emulsions

Theory of emulsification

Emulsions

- Emulsions are small droplets of oils miscible in aqueous phase.
- Emulsions are usually formed by Nonpolar and Amphipathic Lipids along with Bile Salts in aqueous phase.

In Human GIT

 Emulsions are formed as small, miscible dietary Lipid droplets in aqueous phase of intestinal juice in intestinal lumen.

• Emulsions are formed during the process of Emulsification in GIT.

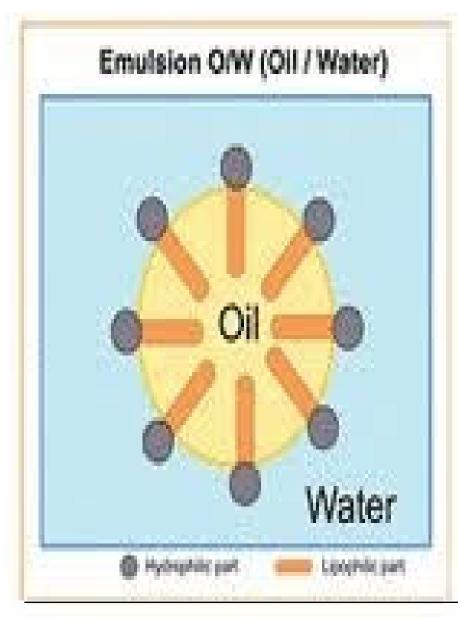
Requirements For Emulsification

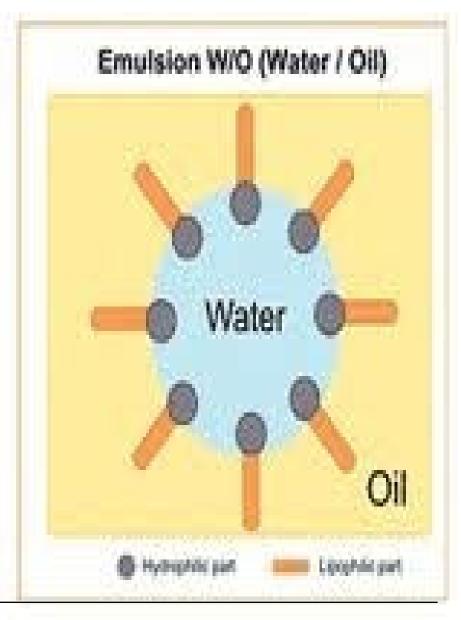
- Emulsifying agents:
 - —Bile salts (Major)
 - -Amphipathic Lipids (Minor)
- Mechanical force aids emulsification.

- Emulsifying agents reduces surface tension.
- Emulsifying agents form a surface layer of separating main bulk of nonpolar Lipids from aqueous phase.

 Emulsions are stabilized by detergent action of emulsifying agents.

Emulsification Process


- Emulsification process takes place in an aqueous phase of intestinal juice in intestinal lumen and forms Emulsions.
- During Emulsification Hydrophobic or nonpolar dietary Lipids (TAG) are mixed with an emulsifying agents:
 - -Bile salts
 - -Lecithin(Amphipathic Lipids)


 Mechanical force(provided by intestinal peristaltic movement) facilitates the process of Emulsification.

Types Of Emulsions

I. Oil In WaterII. Water In Oil

Significance Of Emulsions

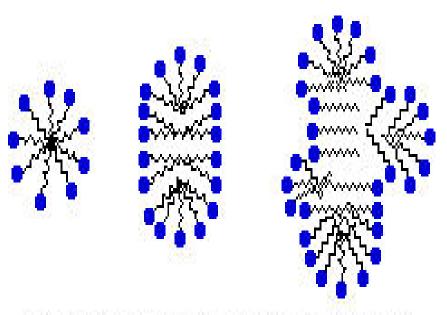
- Emulsions formed in the intestinal lumen help in the digestion of dietary Lipids.
- The dietary large droplets of Fat/Oil are transformed to small, miscible droplets as Emulsions.

Emulsions bring the dietary
 Lipids in contact with Lipid
 digesting Enzymes present in
 aqueous phase of intestinal
 juice.

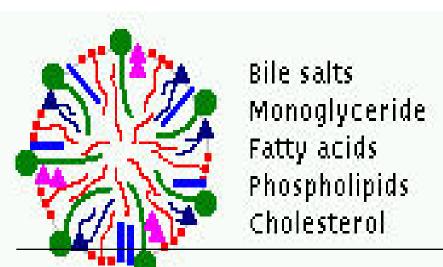
Micelles

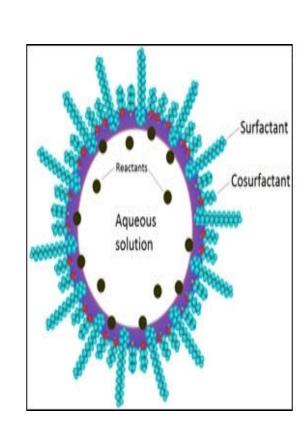
- Micelles have a disc like shape.
- Critical concentration of Amphipathic Lipids in aqueous medium form Micelles(~200 nm).
- Bile salts help in forming Mixed Micelles.

- Mixed Micelles are formed in Intestine after digestion of Lipids.
- By an aggregation of various forms of dietary digested Lipids with Bile salts.


Aggregation of various
 digestive end products of
 dietary Lipids covered with a
 peripheral layer of Bile salts
 form Mixed Micelles in
 intestinal lumen.

 Mixed Micelles contain the non polar Lipids in the interior portions and polar Bile salts on the exterior.




Significance Of Mixed Micelles

- Mixed Micelles helps in absorption of dietary Lipids
- From intestinal lumen into intestinal mucosal cells.

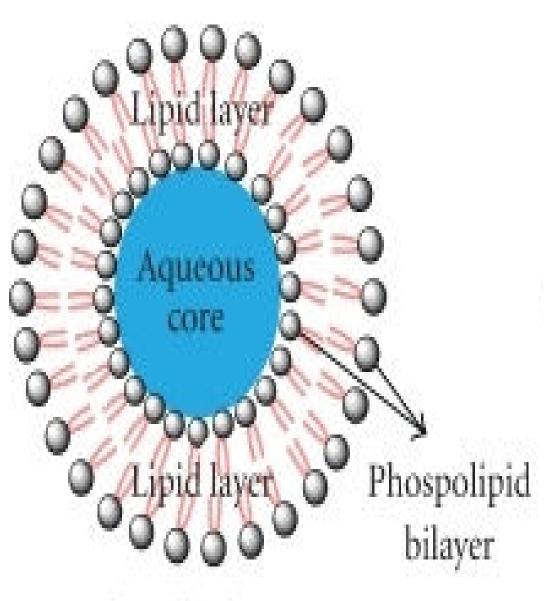
Liposomes

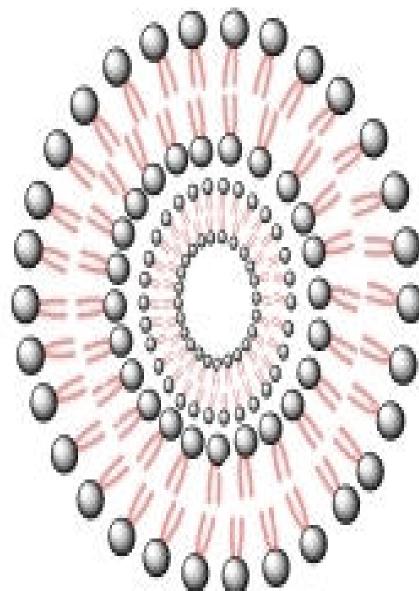
- Amphipathic Lipids when exposed to high frequency sound waves (Ultra Sonication) in aqueous medium to agitate particles and form Liposomes.
- Liposomes can be prepared by disrupting biological membranes by ultra sonication(>20 KHz)

Structures Of Liposomes

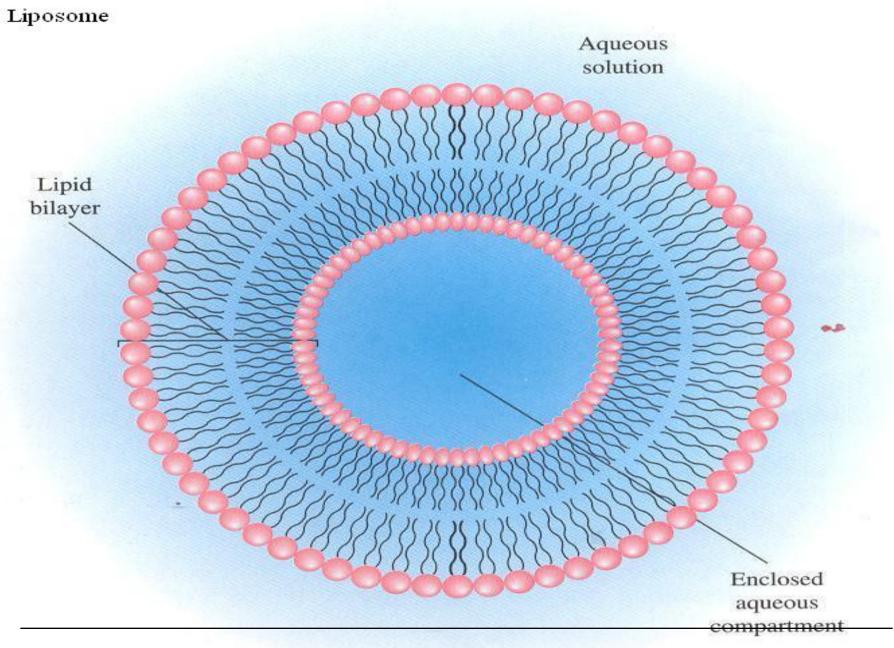
- Liposomes are composite structures made of largely phospholipids and small amounts of other molecules
- Liposomes has spheres of one/ many Lipid bilayers.
- Liposomes contain aqueous regions(polar phase) and intermittently lipid bilayer (non polar phase).

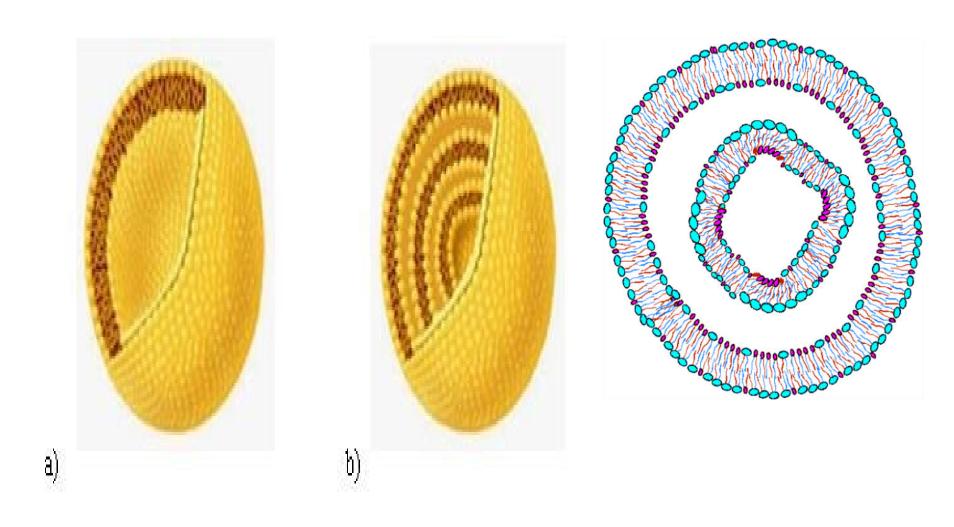
Types Of Liposomes


- Unilamellar Liposome
- Multilamellar Liposome


Structures Of Liposomes

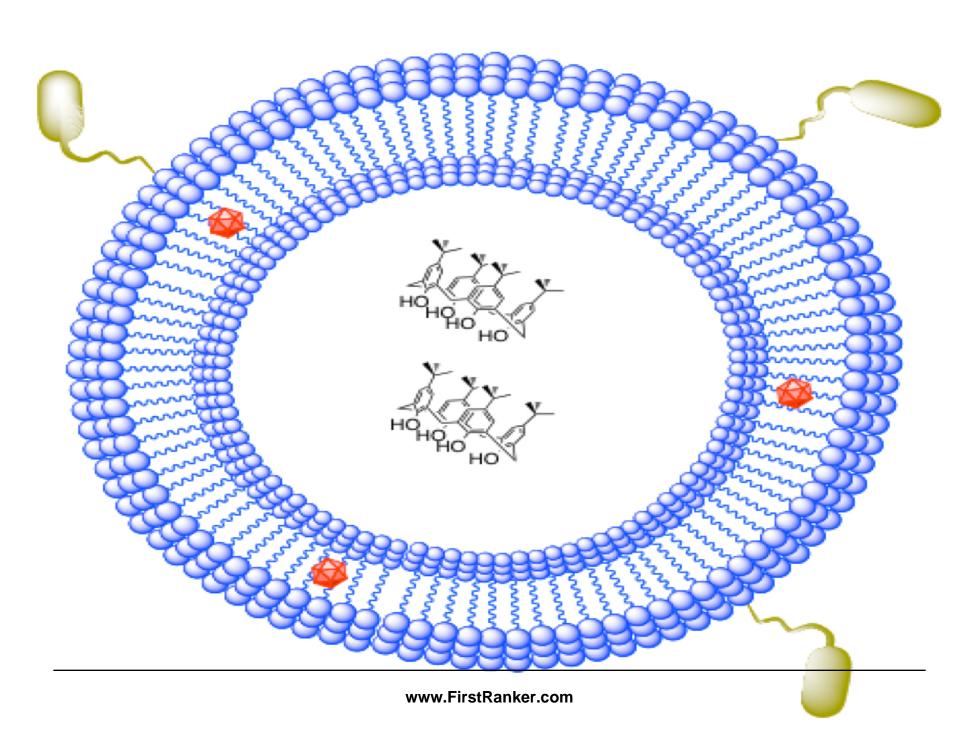
www.FirstRanker.com


www.FirstRanker.com



Unilamellar liposomes

Multilamellar liposomes

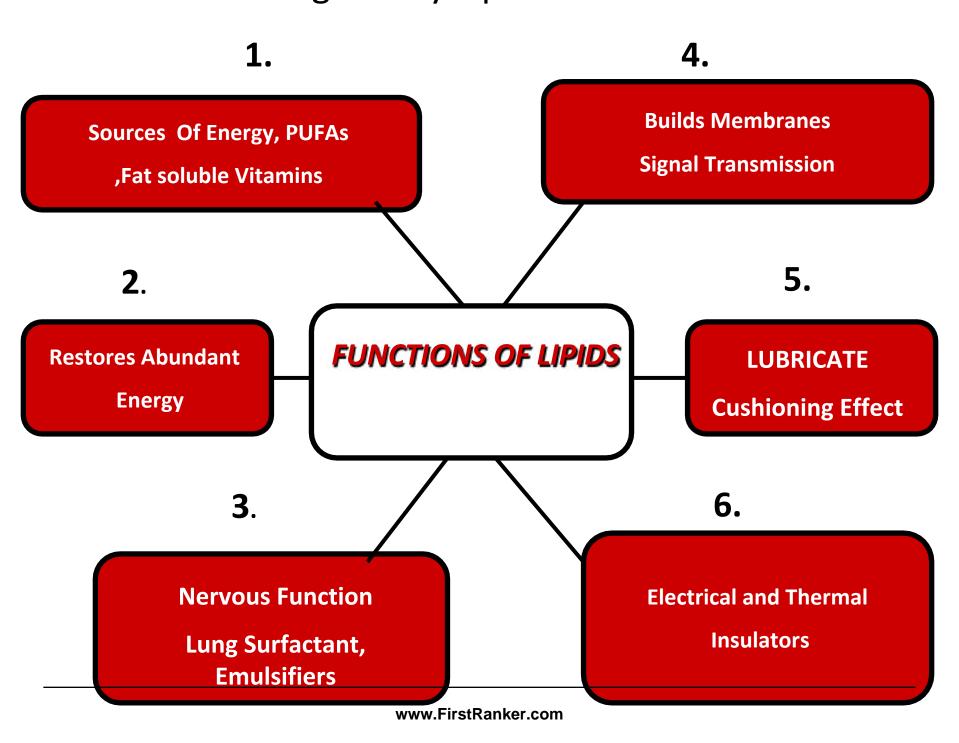

Uses Of Liposomes

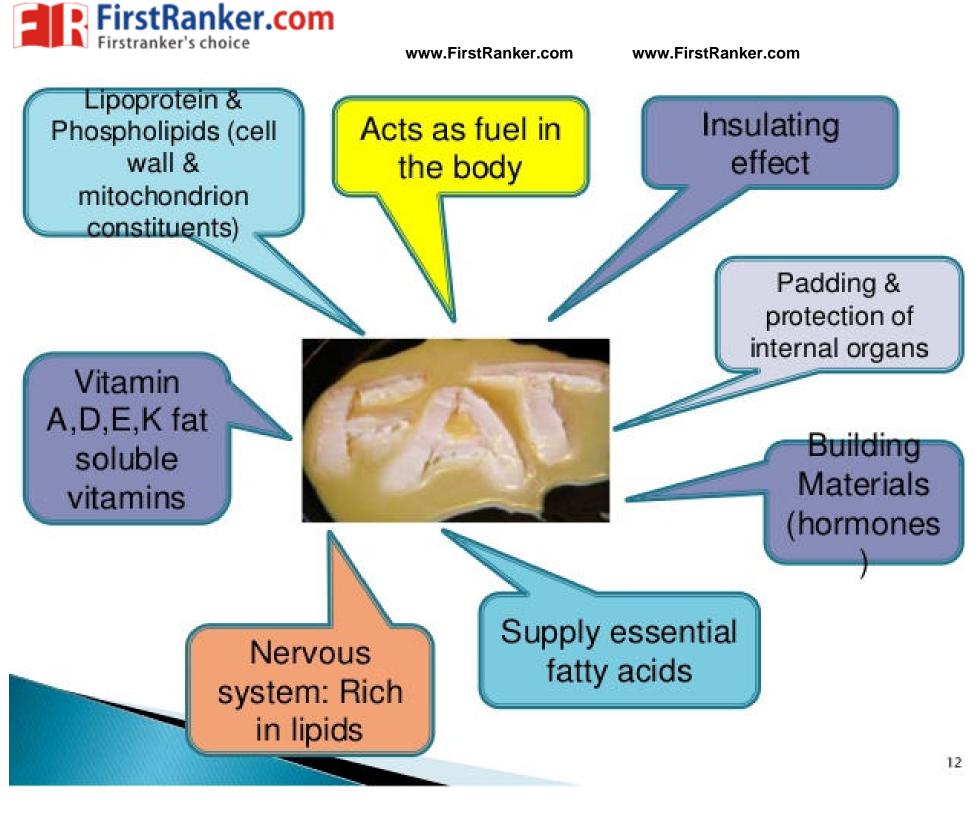
- Liposomes are vehicles for administration of drug through blood, targeted to specific organs.
- Topical transdermal delivery of drugs.
- Transfer of Gene into vascular cells

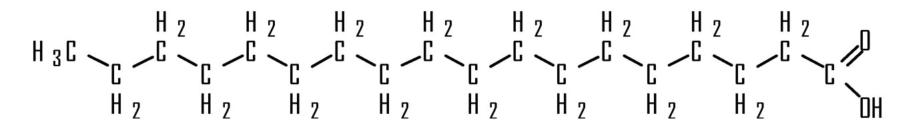
 Water insoluble drugs are carried in Hydrophobic region of Liposome.

 Water soluble drugs are carried in Hydrophilic region of Liposomes.

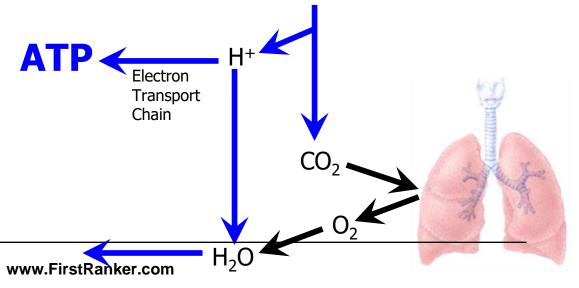
Biomedical Importances Of Body Lipids


The Role of various Body Lipids:


- -Triacylglycerol
- —Free Fatty acids
- —Phospholipids
- —Glycolipids
- -Lipoproteins
- -Cholesterol and Cholesterol Ester
- -Eicosanoids

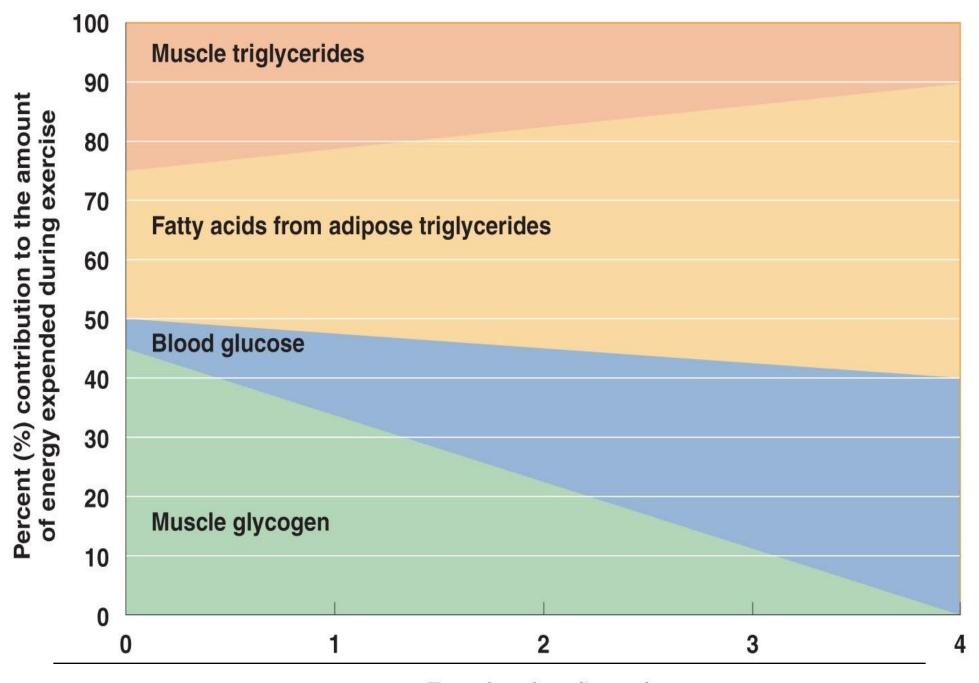

Body Lipids Functions

- 1. Secondary Source of Energy
- 2. Energy Storage Lipids- Long term use
- 3. Thermal and Electrical Insulators
- 4. Cushioning Effect and Shock absorber
- 5. Shape and Contour to body
- 6. Structural Lipids- Biomembrane components
- 7. Cell antigens, receptors, anchoring sites
- 8. Signal Transduction and Nerve Impulse conduction
- 9. Lung Surfactant helps in normal respiration
- 10. Emulsifiers helps in Lipid digestion and absorption
- 11. Transport Lipids
- 12. Metabolic regulatory Lipids



Fatty acids of TAG is a Source of Energy

Energy-Containing Nutrients (C and H)



Good About Body Lipids

- Liberate 9 kcal per gram of TAG.
- Major fuel at rest
- Endurance Exercise
- Stores Energy
- Source of :
 - Essential fatty acids
 - Fat-soluble vitamins

- Regulates cell function
- Maintains membrane structure
- Improve nerve function
- Provides flavors and textures of foods
- Helps us feel satiated

Disorders Associated To Lipids

- Obesity
- Atherosclerosis
- Respiratory Distress Syndrome
- Fatty Liver
- Hyperlipoproteinemias
- Hypolipoproteinemias
- Necrosis ,Oxidative damage of biomembranes due to Lipid peroxidation
- Lipid Storage Disorders

Common Lipids Associated Disorders

- Obesity
- Metabolic Syndrome
 - -Atherosclerosis
 - -Coronary Heart Disease
 - -Hypertension
 - -Diabetes Mellitus

Lipid Storage Disorders Inborn Errors Of Lipid Metabolism

- Congenital Defects where deficient of Enzymes
- Affects an Abnormal accumulation of Lipid forms
- In cells and tissues affecting there functionality.

Table I Lipid levels (mg/DL) in human beings with known heart disease

Test	Desirable	Borderline	Undesirabl
Total cholesterol	< 200	200-240	>240
HDL cholesterol	>45	35-45	<35
Triglycerides	< 200	200-400	>400
LDL cholesterol	<130	130-160	>160
Cholesterol/HDL	< 4.5	4.5-7.5	>5.5
LDL/HDL	< 3.0	3.5	>5.0

Source: Medical Essay (1993)

www.FirstRanker.com www.FirstRanker.com					
S.No	Lipid Storage Disorder	Enzyme Defect and Abnormal Accumulation of			
1	Niemann Picks Disease	Sphingomyelinase Sphingomyelins			
2	Gaucher's Disease	Beta Glucocerebrosidase Glucocerebrosides			
3	Krabbe's Disease	Beta Galactosidase Galactocerebrosides			
4	Tay Sach's Disease	Hexoseaminidase-A Gangliosides			
5	Farber's Disease	Ceramidase Ceramides			

Questions

Long Answer Questions

- Define Lipids (Bloor's Definition).
 Classify Lipids with suitable examples.
- Define Fatty acids. Classify them with different modes and suitable examples.
- What are Compound lipids?
 Describe Phospholipids wrt
 Chemistry, Types, Nature, Sources Distribution, Functions and associated disorders of.
- What are Sterols? Describe the structure, dietary sources, properties & functions of

Cholesterol.

Write Short Notes.

- Biomedical importance of various forms of body Lipids
- Enlist various disorders associated to Lipid forms with biochemical defect and alterations.
- Essential fatty acids (PUFAs) & their role in the body.
- Triacylglycerol/Neutral Fats- Structure & Function.

- Rancidity- Causes & Prevention.
- Gycolipids/Cerebrosides/Gangliosides
- Lipoproteins- Chemistry, types & functions
- Eicosanoids/Prostaglandins

- Therapeutic uses of Prostaglandins
- Distinguish between Fats & Waxes
- Nomenclature & Isomerism of fatty acids
- Omega 3 fatty acids and their importance
- Amphipathic nature of lipids and their roles
- Distinguish between Fats & Oils
- Enumerate biomedical important lipids with their classes
- Properties of Fatty acids.
- Simple Lipids with their examples
- Enumerate Compound Lipids & one function of each
- Name Derived lipids & their functions
- Trans Fats and their harmful effects
- Tests to check the purity of fats & oils/Characteristic number of Fats

Revision Questions

- Define Lipids
- Number and Names of Lipid Classes
- Define Derived Lipids
- Examples of Derived Lipids
- Define Fatty acids
- What is Delta and Omega end of FAs
- What is Beta Carbon of a Fatty acid
- 6 Modes of Classification of Fatty

- Fatty acids with one double bond is:------
- Name most predominant Fatty acid of human body-----

Most easily metabolize	ed fatty acids are :	_
, and		

- Fatty acid with odd and even number carbon atoms are:
- PUFAs are Fatty acids with------
- Name PUFAs of Omega 3 and 6 types
- Enumerate Lipidosis with enzyme defects

- Are Nutritionally Essential Fatty acids and PUFAs same
- Name branched Chain and Odd Number Fatty acids
- Name Cyclic and Hydroxy Fatty acids
- What are Cis and Trans Fatty acids
- Enlist Omega 3 Fatty acids and 3 Main Roles

- Criteria for Sub classification of Simple Lipids
- Define Simple lipids
- Examples/Subtypes of Simple Lipids
- What is a Class of Fat/Oil and its chemical name
- Define Waxes
- Name human body Wax

- Differences of Fats and Oils
- Differentiate between
 Cerebrosides and Gangliosides
- Occurrence and Role of TAG
- Definition of Compound Lipids
- Types of Compound lipids
- Sphingophospholipid Example

- Number and Names Of Glycerophospholipids
- Hormonal role of Phospholipds
- Chemical composition of Lung Surfactant
- Which Compound Lipid is classified under classes of Lipid and Protein?

- Enzyme defect in Niemann Picks Disease
- Red Spot Macula is noted in which all conditions
- In which disorder Ceramides get accumulated in joints
- Emulsions and Liposomes results due to which Lipid forms.
- On what criteria's TAG is selected as reservoir of energy for long term use
- Enumerate various Lipid Storage disorders with biochemical defect and abnormal accumulated Lipid form

- What value of L/S ratio shows lung maturity and immaturity?
- What are components of Lung Surfactant?
- What are roles of Lung surfactant?
- What form of energy source helps in endurance of exercises of body?
- Which Lipids are associated to biomembranes?
- What are applications of Amphipathic Lipids?
- What clinical conditions shows Hypercholesterolemia?
- Enzymes associated for Eicosanoids biosynthesis.
- Therapeutic roles of Prostaglandins

Biochemistry Department