

Properties of Amino Acids

Specific learning objectives

- Properties of amino acids.
- Structure organization of the Proteins:
- 1) Primary structure
- 2) Secondary Structure
- 3) Tertiary Structure
- 4) Quaternary Structure

Properties of Amino Acids

Amino Acids have an Asymmetric Center

- Optically active molecules have an asymmetry such that they are not superimposable on their mirror image.
- C α atoms of all as are asymmetric centers and optically active except glycine, in which R=H two of the four substituents on the α -carbon atoms are hydrogen.

Cα is a chiral center, this carbon atom is attached to four different groups.

Absolute Configuration of Amino Acids

- All α -amino acids (aa) derived from proteins have the L-stereochemical configuration.
- They all have the same relative configuration about their $C\alpha$ atoms.
- If the NH₃+ projected to the left, the aa has L (Levo) absolute configuration.
- NH₃+ projected to the right, the aa has D (Dextro) absolute configuration.

Fig. 2.7. Textbook of Biochemistry with Clinical Correlations, 4th edition by

Acid-Base Properties of Amino Acids

- Amino acids in aqueous solution, contain weakly acidic α -carboxyl groups and weakly basic α -amino groups.
- Charged and uncharged form of the ionizable weak acid groups –COOH and -NH₃+ exist in protonic equilibrium:

R-COOH
$$\longrightarrow$$
 R-COO⁻ + H+ R- NH₃+ \longrightarrow R- NH₂+ + H+

- Both R-COOH and R-NH₃₊ are weak acids. R-COOH are stronger acid than R-NH₃₊
- At physiological pH, carboxyl group exists as R-COO₋ and amino group as R-NH₃₊

Henderson-Hasselbalch equation: Quantitative relationship between pH and concentration of a weak acid (HA) and its conjugate base (A-).

Derivation of Henderson-Hasselbalch equation: Consider the release of a proton by a weak acid represented by HA:

The "salt" or conjugate base (A-) is the ionized form of a weak acid.

$$K_{a} = \frac{[H^{+}][A^{-}]}{[HA]}$$
 OR $[H^{+}] = \frac{K_{a}[HA]}{[A^{-}]}$

$$\left[\mathbf{H}^{+}\right] = \frac{K_{a}\left[\mathbf{H}\mathbf{A}\right]}{\left[\mathbf{A}^{-}\right]}$$

$$-\log[\mathbf{H}^+] = -\log K_a + \log \frac{[\mathbf{A}^-]}{[\mathbf{H}\mathbf{A}]}$$

• Substituting pH = $-\log[H+]$ and pK_a = $-\log K_a$ obtain Henderson-Hasselbalch equation:

$$\mathbf{pH} = \mathbf{p}K_a + \log\frac{\left[\mathbf{A}^{-}\right]}{\left[\mathbf{H}\mathbf{A}\right]} = \mathbf{p}K_a + \log\frac{\left[\mathbf{B}\mathbf{A}\mathbf{S}\mathbf{E}\right]}{\left[\mathbf{A}\mathbf{C}\mathbf{I}\mathbf{D}\right]}$$

Cont--

- Larger the K_a, the stronger the acid, because most of the HA has dissociated into H+ and A-.
- Conversely, the smaller the K_a, the less acid has dissociated and, therefore, the weaker the acid.
- pKa values for a particular molecule are determined by titration.

Titration of an Amino Acids

Dissociation of the carboxyl group of Alanine:

- At a low (acidic) pH, both of ionizable α -carboxyl and α -amino group are protonated.
- As pH of solution raised, COOH group of form I can dissociate by donating a proton to the medium.
- Release of a proton results in the formation of carboxylate group, – COO— of form II, which is the dipolar form of the Alanine.

Ionic forms of alanine in acidic, neutral, and basic solutions

Fig. 1.10: Lippincott's illustrated reviews- Biochemistry 6th edition

Cont--

Dissociation of the amino group:

- Second titratable group of alanine is amino (– NH3+) group.
- This is a much weaker acid than the COOH group and, i.e, has a much smaller dissociation constant, K_2 .
- Release of a proton from protonated amino group of form II results in fully deprotonated form of alanine, form III.

Titration Curve of Alanine

- pKa for acidic group (–COOH) is pK₁ is 2.35, whereas pKa for next acidic group (– NH3+) is pK₂ is 9.69.
- Isoelectric pH (pI) of Alanine is:

$$pI = \frac{pK_1 + pK_2}{2} = \frac{2.35 + 9.69}{2} = 6.02$$

Fig. 1.11: Lippincott's illustrated reviews- Biochemistry 6th edition

Cont--

- In clinical laboratory, knowledge of the isoelectric pH guides, selection of conditions for electrophoretic separations.
- For example, two simple as (with one COOH and one NH3+ group) separated by electrophoresis either at an acidic or basic pH that exploits subtle differences in net charge based on subtle differences in pK₁ or pK₂ values.

Ultraviolet Spectra of Tyr, Phe and Trp

- Amino acids do not absorb visible light.
- Tyr, Phe, and Trp absorb high-wavelength (250-290nm) UV light.
- Absorption of light at 280nm used to estimate the concentration of a protein in solution, if the number of Trp and Tyr residues in the protein is known.

Fig.3.7. Harper's Illustrated Biochemistry 30th edition

Structural organization of Proteins

FIGURE 3-16 Levels of structure in proteins. The primary structure consists of a sequence of amino acids linked together by peptide bonds and includes any disulfide bonds. The resulting polypeptide can be coiled into units of secondary structure, such as an α helix. The he-

lix is a part of the *tertiary structure* of the folded polypeptide, which is itself one of the subunits that make up the *quaternary structure* of the multisubunit protein, in this case hemoglobin.

Fig.3.16. Lehninger Principles of Biochemistry

Primary Structure of Proteins

Primary Structure

- Amino acids are linked by peptide bonds to form polypeptide chains.
- Ordered sequence of aa in a polypeptide chains is the primary structure of the protein.
- It is the unique primary structure that enables a polypeptide chain to fold into a specific 3-D structure that gives the protein its chemical and physiological properties.

Amino Acids are Polymerized into Peptides and Proteins

- α -carboxyl group of an aa with side chain R1 forms a covalent peptide bond with α -amino group of the aa with side chain R2 by elimination of a molecule of H_2O .
- Dipeptide (contain two aa bonded to each other via a single peptide bond).

Fig. 2.8. Peptide bond formation: Textbook of Biochemistry with Clinical Correlations 4th edition by Thomas M Devlin

Cont--

- Tripeptides (contains three aa) form a second peptide bond through its terminal carboxylic acid group and the a amino of a third amino acid (R3).
- Repetition of this process form a polypeptide or protein of specific aa sequence (R1R,2R,3R4···Rn).

Components of a Polypeptide Chain

- It consists of a repeating part, backbone, and a variable part, comprising the distinctive side chains.
- Polypeptide backbone is rich in hydrogenbonding potential. Each residue contains a carbonyl group, and, with the exception of proline, an NH group.

 Mass of a protein expressed in units of daltons; one Dalton (Da) is equal to one atomic mass unit.

Fig.2.15: Components of a polypeptide chain: Biochemistry 7th edition by Berg, Tymoczko and Stryer

Peptide Bond has Partial Double-Bond Character

- Single bond linked the α -carboxyl and α -nitrogen atoms, this **peptide bond exhibits partial double-bond character**.
- Bond that connects a carbonyl carbon to an α -nitrogen cannot rotate and thus conformation of the peptide backbone is constrained.
- Almost all peptide bonds in proteins are trans.
- The O, C, N, and H atoms of a peptide bond are coplanar.

Fig.2.18: Peptide bonds are planar: Biochemistry 7th edition by Berg, Tymoczko and Stryer

Rotation about Bonds in a Polypeptide

- Structure of each aa in a polypeptide adjusted by rotation about two single bonds.
- Phi (ϕ) is angle of rotation about bond between N-C_{α} bond.

- psi (ψ) is angle of rotation about bond between $C_{\alpha}\text{-}C$ bond.
- Freedom of rotation about two bonds of each aa allows proteins to fold in many ways.

Fig.2.22: Biochemistry 7th edition by Berg, Tymoczko and Stryer

Ramachandran Plot

- In principle, values of φ and ψ bet. -180° and +180°, but many values are prohibited by steric interference between atoms in the polypeptide backbone and aa side chains
- Allowed/favorable regions with no steric overlap are shown in dark green; borderline regions are shown in light green.
- In peptides, for an other than glycine, most combinations of φ and ψ angles are disallowed because of steric hindrance.

Fig.2.23: Biochemistry 7th edition by Berg, Tymoczko and Stryer

Amino Acid Sequences have Direction

- A polypeptide chain has polarity because its ends are different: an α -amino group is present at one end and an α -carboxyl group at the other.
- Amino end is taken to be the beginning of a polypeptide chain, and so the sequence of aa in a polypeptide chain is written starting with the amino-terminal residue.

Fig.2.14: Amino acid sequences have direction: Biochemistry 7th edition by Berg, Tymoczko and Stryer

Cross-Links: Formation of a Disulfide Bond

- In some proteins, the linear polypeptide chain is cross-linked.
- The most common cross-links are disulfide bonds, formed by the oxidation of a pair of cysteine residues.
- The resulting unit of two linked cysteines is called cystine.

Fig.2.16: Cross-links: Biochemistry 7th edition by Berg, Tymoczko and Stryer

Cont--

- Extracellular proteins often have several disulfide bonds, whereas intracellular proteins lack them.
- For ex., collagen fibers in connective tissue and fibrin blood clots.

Summary

- All aa possess at least two weakly acidic functional groups, R-NH₃₊ and R-COOH.
- Many also possess additional weakly acidic functional groups such as phenolic -OH, -SH, guanidino, or imidazole moieties.
- The pKa values of all functional groups of an aa or of a peptide dictate its net charge at a given pH.
- pl, the isoelectric pH, is the pH at which an aa bears no net charge, and does not move in a direct current electrical field.

Cont--

- The most important element of primary structure is the sequence of amino acid residues.
- Nature of the covalent bonds in the polypeptide backbone places constraints on structure.
- Peptide bond has a partial double bond character that keeps the entire peptide group in a rigid planar configuration.
- The N-C $_{\alpha}$ and C $_{\alpha}$ -C bonds can rotate to assume bond angles of φ and ψ , respectively.

Group Discussion

• Subtopics of previous class discussed in groups.

Reference Books

- 1) Harper's Illustrated Biochemistry-30th edition.
- 2) Textbook of Biochemistry with Clinical Correlations. 4th edition. Thomas M. Devlin.
- 3) Biochemistry. 4th edition. Donald Voet and Judith G. Voet.
- 4) Biochemistry 7th edition by Jeremy M. Berg, John L. Tymoczko and Lubert Stryer.
- 5) Lehninger Principles of Biochemistry.

31

Thank you