

### Structure of Amino Acids

# Specific Learning Objectives

- 1. General Structure of amino acids
- 2. Amino acids classification based on:
- Standard and Non-standard amino acids (aa)
- Essential and non-essential aa
- Ketogenic and Glucogenic aa
- Side chain functional group
- 3. Function of essential amino acids



### Introduction

- Amino acids as a building blocks of peptides and proteins
- •Proteins are made up of hundreds of smaller units called **amino acids** that are attached to one another by peptide bonds, forming a long chain.
- Protein as a string of beads where each bead is an amino acid.



www.khanacademy.org

# Genetic Code Specifies 20 L-α-Amino Acids

- •Proteins are synthesized from the set of 20 L- $\alpha$ -amino acids encoded by nucleotide triplets called codons.
- •Common amino acids are those for which at least one specific codon exists in the DNA genetic code.
- •Sequences of peptides and proteins represent by using one- and three letter abbreviations for each amino acid.



Genetic information is transcribed from a DNA sequence into mRNA and then translated to amino acid sequence of a protein



Fig. 2.1. Textbook of Biochemistry with Clinical Correlations, 4<sup>th</sup> edition by Thomas M Devlin

# General Structure of Common Amino Acids

- •General structure of amino acids NH₃+-CH-COO group and a variable side chain
- Side chain determines: protein folding, binding to specific ligand and interaction with its environment
- •Amino acids consists of a constant H2N-CH(R)- соон (R is side chain)
- •At neutral pH, H<sub>2</sub>N- protonated to H<sub>3</sub>N+-, and –COOH deprotonated to –COO<sup>-</sup>



# Amino-Acids Classification Based on Standard and Non-Standard Amino Acids

- 1. Standard amino-acids: Those 20 amino acids are encoded by universal genetic code
- 2. Non-Standard amino-acids: Two amino acids incorporated into proteins by unique synthetic mechanism
- •Selenocysteine: Incorporated when mRNA translated included SECIS (selenocysteine insertion seq) element, causes the UGA codon to encode selenocysteine instead of stop codon)
- •Pyrrolysine: used by methanogenic archaea in enzyme that they use to produce methane. It is coded for UAG stop codon.

### Standard amino acids

- •All proteins are composed of the 20 "standard "amino acids.
- •Common central alpha ( $\alpha$ )-carbon atom bound to a carboxylic acid group, an amino group and a hydrogen atom are covalently bonded.
- •They have a primary amino group and a carboxylic acid group substituent on the same carbon atom, with the exception of proline, (has a secondary amino group).





# How Proline gives conformational rigidity?

•Proline classified as an imino acid, its  $\alpha$ -amine is a secondary amine with its a nitrogen having two covalent bonds to carbon (to the  $\alpha$ -carbon and side chain carbon), rather than primary amine

H<sub>2</sub>C CH<sub>2</sub>
N<sup>+</sup>—C COOH<sub>2</sub>
H
Proline
(Pro, P)

•Incorporation of amino nitrogen into a five membered ring constrains rotational freedom around  $-N_{\alpha}-C_{\alpha}$ -bond in proline to specific rotational angle, reduces structural flexibility of polypeptide regions containing proline.

# Non-Standard Amino Acids

•Selenocysteine, 21<sup>st</sup> protein L-α amino acids

HSe H<sub>2</sub>N OH

- •Selenium atom replaces the sulfur of its elemental analog, cysteine
- •Selenocysteine is not the product of a posttranslational modification, but is inserted directly into a growing polypeptide during translation.
- Selenocysteine is charged on a special tRNA called tRNA<sub>sec</sub> specific for UGA (STOP)codon inserted into growing polypeptide during translation



### Other Classification of Amino Acids

- •Non-protein aa: Not naturally encoded by genetic code but found in free state as intermediates of metabolic pathway for standard aa: Ornithine and citrulline are intermediates in urea biosynthesis.
- Non  $\alpha$ -aa: -NH<sub>2</sub> group not attached to  $\alpha$ -carbon atom but some other carbon atom. Ex.  $\gamma$ -aminobutyric acid (GABA) and  $\beta$ -alanine.
- •Modified protein aa: Amino acids modified after they incorporated into protein. Proline and lysine undergo hydroxylation to become hydroxyproline and Hydroxylysine. Essential for formation of mature collagen.

# AA Classified on Basis of Nutritional Requirement

- •Essential amino acids: Not synthesised in the body and must be supplied in diet
- •Non-essential amino acids: Synthesized in body and there is no diet dependency for them
- •Semi-essential amino acids: Not synthesised in the body in adequate amounts and requires dietary supplementation.



#### **Amino-Acid Requirements of Humans**

| Nutritionally Essential | <b>Nutritionally Nonessential</b> |
|-------------------------|-----------------------------------|
| Arginine <sup>1</sup>   | Alanine                           |
| Histidine               | Asparagine                        |
| Isoleucine              | Aspartate                         |
| Leucine                 | Cysteine                          |
| Lysine                  | Glutamate                         |
| Methionine              | Glutamine                         |
| Phenylalanine           | Glycine                           |
| Threonine               | Hydroxyproline <sup>2</sup>       |
| Tryptophan              | Hydroxylysine <sup>2</sup>        |
| Valine                  | Proline                           |
|                         | Serine                            |
|                         | Tyrosine                          |

Table 28.1. Harper's Illustrated Biochemistry 26<sup>th</sup> edition

### AA Classified on Basis of metabolic classification

- •Ketogenic amino acids: Only two aa are ketogenic, ex. Lysine and leucine. They catabolically give intermediates convertible into acetyl-CoA or acetoacetyl-CoA
- •Glucogenic amino acids: Those aa give rise to intermediates of glycolysis or Kreb's cycle convertible by gluconeogenesis into glucose. Ex. Arg, His etc.
- •Mixed amino acids: There are aa, carbon skeleton of which catabolized to produce the glycolytic intermediates as well as acetyl-CoA derivatives. Ex. Phe, Try etc.



# Amino-Acids Classification Based on Side Chain Groups

- •Based on type of functional group (R group) present amino acids are classified as: Aliphatic, aromatic, acidic, basic, acid amide, sulfur and cyclic amino acids.
- •Based on characteristic of functional group amino acids are classified as: polar and non-polar amino acids.
- •Based on **site of attachment of functional group**. They are also classified as: alpha, beta, gamma and delta amino acids.





Cont-TABLE 3-1 L-α-Amino Acids Present in Proteins

| Name                       | Symbol               | Structural Formula                                                           | pK <sub>1</sub>           | pK <sub>2</sub>     | p <i>K</i> <sub>3</sub> |
|----------------------------|----------------------|------------------------------------------------------------------------------|---------------------------|---------------------|-------------------------|
| With Aliphatic Side Chains | Nonpolar/Hydrophobio | С                                                                            | α-СООН                    | α-NH <sub>3</sub> + | R Group                 |
| Glycine                    | Gly [G]              | H-CH-COO-<br> <br>NH <sub>3</sub> +                                          | 2.4                       | 9.8                 |                         |
| Alanine                    | Ala [A]              | CH <sub>3</sub> -CH-COO-                                                     | 2.4                       | 9.9                 |                         |
|                            |                      | CH <sub>3</sub> CH-COO-<br>NH <sub>3</sub> +                                 | Methyl R group            |                     |                         |
| Valine                     | Val [V]              | H₃C                                                                          | 2.2                       | 9.7                 |                         |
|                            |                      | H <sub>3</sub> C CH-CH-COO-                                                  | Isopropyl R group         |                     |                         |
| Leucine                    | Leu [L]              | H <sub>3</sub> C                                                             | 2.3                       | 9.7                 |                         |
|                            |                      | CH-CH <sub>2</sub> -CH-COO-<br>H <sub>3</sub> C NH <sub>3</sub> <sup>+</sup> |                           |                     |                         |
| Isoleucine                 | lle [I]              | CH <sub>3</sub>                                                              | 2.3                       | 9.8                 |                         |
|                            |                      | CH <sub>2</sub> CH-CH-COO-                                                   |                           |                     |                         |
|                            |                      | ĆH <sub>3</sub> NH <sub>3</sub> <sup>+</sup>                                 | Branching in isobutyl sid | de chain on β ca    | rbon of amino           |

Table 3.1. Harper's Illustrated Biochemistry 30 edition

#### Cont--

| Name                                               | Symbol  | Structural Formula                                                 | pK <sub>1</sub>                                                                 | pK <sub>2</sub>     | pK <sub>3</sub> |  |  |
|----------------------------------------------------|---------|--------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------|-----------------|--|--|
| With Side Chains Containing Hydroxylic (OH) Groups |         |                                                                    |                                                                                 |                     |                 |  |  |
| Serine                                             | Ser [S] | CH <sub>2</sub> -CH-COO-                                           | 2.2                                                                             | 9.2                 | about 13        |  |  |
| Polar, uncharged-R group                           |         | CH <sub>2</sub> -CH-COO-<br>   <br>OH NH <sub>3</sub> <sup>+</sup> | Hydroxymet                                                                      | xymethyl R group    |                 |  |  |
| Threonine                                          | Thr [T] | CH <sub>3</sub> CH CH COO                                          | 2.1                                                                             | 9.1                 | about 13        |  |  |
| Polar, uncharged-R group                           |         | OH NH <sub>3</sub> <sup>+</sup>                                    | CH <sub>3</sub> - CH-CH-COO- 2.1 9.1 OH NH <sub>3</sub> + Secondary Alcohol str |                     |                 |  |  |
| Tyrosine                                           | Tyr [Y] | Mentioned in amino acids                                           | Mentioned in amino acids with aromatic rings section                            |                     |                 |  |  |
| With Side Chains Containing Sulfur Atoms           |         |                                                                    | α-СООН                                                                          | α-NH <sub>3</sub> + | R Group         |  |  |
| Cysteine                                           | Cys [C] | CH2-CH-COO-                                                        | 1.9                                                                             | 10.8                | 8.3             |  |  |
| Polar, uncharged-R group                           |         | CH <sub>2</sub> -CH-COO-<br>   <br>SH NH <sub>3</sub> +            | Thiolmethyl/Sulfhydryl R group                                                  |                     |                 |  |  |
| Methionine Nonpolar                                | Met [M] | CH <sub>2</sub> - CH <sub>2</sub> - CH - COO                       | 2.1                                                                             | 9.3                 |                 |  |  |
|                                                    |         | S- CH <sub>3</sub> NH <sub>3</sub> <sup>+</sup>                    | Methyl ethyl thiol ether R gro                                                  |                     |                 |  |  |



#### Cont--

| Name                                                                                                              | Symbol                         | Structural Formula                                               | pK <sub>1</sub> | pK <sub>2</sub> | pK <sub>3</sub> |
|-------------------------------------------------------------------------------------------------------------------|--------------------------------|------------------------------------------------------------------|-----------------|-----------------|-----------------|
| With Side Chains Containing Acidic Groups or Their Amides                                                         |                                |                                                                  |                 |                 |                 |
| Aspartic acid                                                                                                     | Asp [D]                        | -OOC - CH <sub>2</sub> - CH - COO-                               | 2.1             | 9.9             | 3.9             |
| Aspartic acid Asp [D] —OOC — CH <sub>2</sub> — CH — COO— Negatively charged R group  NH <sub>3</sub> <sup>+</sup> |                                | β-COOH R group                                                   |                 |                 |                 |
| Asparagine                                                                                                        | Asn [N]                        | H <sub>2</sub> N- C-CH <sub>2</sub> -CH-COO-                     | 2.1             | 8.8             |                 |
| Polar, Uncharged-R group  Asn [N]  H <sub>2</sub> N-C-CH <sub>2</sub> -CH-COO-                                    |                                |                                                                  |                 |                 |                 |
| Glutamic acid                                                                                                     | Glu [E]                        | -OOC - CH <sub>2</sub> - CH <sub>2</sub> - CH - COO-             | 2.1             | 9.5             | 4.1             |
| Negatively charged R group  Glu [E]  -OOC-CH <sub>2</sub> -CH <sub>-</sub> COO- NH <sub>3</sub> +                 |                                | γ-COOH R g                                                       | group           |                 |                 |
| Glutamine                                                                                                         | Gin [Q]                        | H <sub>2</sub> N- C- CH <sub>2</sub> - CH <sub>2</sub> - CH-COO- | 2.2             | 9.1             |                 |
| Polar, Uncharged-R g                                                                                              | O NH <sub>3</sub> <sup>+</sup> |                                                                  |                 |                 |                 |

#### Cont--

| Name                  | Symbol              | Structural Formula                                                                                             | pK <sub>1</sub>         | pK <sub>2</sub> | pK <sub>3</sub> |
|-----------------------|---------------------|----------------------------------------------------------------------------------------------------------------|-------------------------|-----------------|-----------------|
| With Side Chains Cont | aining Basic Groups | Positively charged R groups                                                                                    |                         |                 |                 |
| Arginine              | Arg [R]             | H-N-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH-COO-<br> <br>  C=NH <sub>2</sub> + NH <sub>3</sub> + | 1.8                     | 9.0             | 12.5            |
|                       |                     | NH <sub>2</sub>                                                                                                | Guanidinium R group     |                 |                 |
| Lysine                | Lys [K]             | CH2-CH2-CH2-CH-COO-                                                                                            | 2.2                     | 9.2             | 10.8            |
|                       |                     | CH <sub>2</sub> - CH <sub>2</sub> - CH <sub>2</sub> - CH <sub>2</sub> - CH - COO -                             | ε-NH+ <sub>3</sub> R gr | oup             |                 |
| Histidine             | His [H]             | CH2-CH-COO                                                                                                     | 1.8                     | 9.3             | 6.0             |
|                       |                     | HN N NH <sub>3</sub> <sup>+</sup>                                                                              | Imidazolium R group     |                 |                 |



#### Cont--

| Name                    | Symbol  | Structural Formula                                 | pK <sub>1</sub> | pK <sub>2</sub> | pK <sub>3</sub> |
|-------------------------|---------|----------------------------------------------------|-----------------|-----------------|-----------------|
| Containing Aromatic Rin | ngs     |                                                    |                 |                 |                 |
| Histidine               | His [H] | Mentioned in amino acids with basic groups section |                 |                 |                 |
| Phenylalanine           | Phe [F] | CH2-CH-COO-                                        | 2.2             | 9.2             |                 |
|                         |         | CH <sub>2</sub> -CH-COO-<br>NH <sub>3</sub> +      | Benzene rir     | ng R group      |                 |
| Tyrosine                | Tyr [Y] | HO-CH2-CH-COO-                                     | 2.2             | 9.1             | 10.1            |
|                         |         | HO- CH <sub>2</sub> -CH-COO-                       | Phenol R gr     | oup             |                 |
| Tryptophan              | Trp [W] | CH <sub>2</sub> -CH-COO                            | 2.4             | 9.4             |                 |
|                         |         | CH <sub>2</sub> -CH-COO-<br>NH <sub>3</sub> +      | eterocyclic st  | ructure, ind    | ole R group     |
|                         |         | H                                                  |                 |                 |                 |
| Imino Acid              |         |                                                    |                 |                 |                 |
| Proline                 | Pro [P] |                                                    | 2.0             | 10.6            |                 |
|                         |         | N COO-                                             | nino group belo | angs to a five  | memher ring     |
|                         |         |                                                    | illo group beit | ongs to a rive  | Thember fills   |

### Function of Essential Amino acids

#### Non-polar amino acids:

- 1. Aromatic aa:
- a) Phenylalanine: precursor for tyrosine, dopamine, nor-epinephrine, epinephrine and melanin.
- •Genetic disorder phenylketonuria is the inability to metabolize phenylalanine because of a lack of phenylalanine hydroxylase.
- a) **Tryptophan:** precursor for neurotransmitter (serotonin), hormone (melatonin) and vitamin niacin. Trp and Tyr residues anchoring membrane proteins within cell membrane.
- •Fructose malabsorption causes improper absorption of Trp in intestine causes reduced level of Trp in blood.



#### 2. Aliphatic amino acids:

- a) Alanine: Alanine synthesized from pyruvate and branched chain aa. It plays an imp. role in glucose-alanine cycle between tissues and liver.
- •This cycle enables pyruvate and glutamate to be removed from muscle and safely transported to liver.
- •Alteration in alanine cycle increase the level of ALT (Alanine transferases) which linked to the development of type II diabetes.

- b) Valine: Essential for hematopoietic stem cell (HSC) self-renewal.
- •In sickle-cell disease, a single glutamic acid in  $\beta$ -globin replaced with valine because valine is hydrophobic, whereas glutamic acid is hydrophilic, this change makes the Hb prone to abnormal aggregation.
- c) Leucine: Primary metabolic end products of leucine metabolism are acetyl-CoA and acetoacetate. It is also a imp ketogenic aa.
- •Adipose and muscle tissue use leucine in the formation of sterols.
- •MSUD caused by deficiency of branched chain  $\alpha$ -keto acid dehydrogenase complex leading to build-up branched chain as and their toxic product ketoacids present in blood and urine.



c) Isoleucine: diverse physiological functions, such as assisting wound healing, detoxification of nitrogenous wastes, stimulating immune function, and promoting secretion of several hormones.

#### 3. Sulfur-containing aa:

- a) Methionine: Substrate for other amino acids such as cysteine and taurine, versatile compounds such as S-adenosyl methionine and antioxidant glutathione.
- •Homocysteine can be used to regenerate methionine or to form cysteine.
- •Improper conversion of methionine can lead to atherosclerosis due to accumulation of homocysteine.

#### Polar uncharged aa:

- 1. Threonine: Its residue ssusceptible to numerous posttranslational modifications.
- •The hydroxyl side-chain undergo O-linked glycosylation.
- •Threonine residues undergo phosphorylation through the action of a threonine kinase. In its phosphorylated form, it can be referred to as phosphothreonine. Its role in cell signal transduction and neural activity.



#### **Polar Charged amino-acids:**

- 1. Positive charge/Basic aa:
- a) **Histidine:** precursor for histamine, an amine produced in the body necessary for inflammation.
- •Histidine ammonia-lyase converts histidine into ammonia and urocanic acid. deficiency in this enzyme in rare metabolic disorder histidinemia.

- **b) Lysine:** Lysine can also contribute to protein stability as its  $\varepsilon$ -amino group often participates in hydrogen bonding, salt bridges and covalent interactions to form a Schiff base.
- •A second major role of lysine is in epigenetic regulation by means of histone modification.
- •It plays a key role in other biological processes including; structural proteins of connective tissues, calcium homeostasis and fatty-acid metabolism.
- •Due to a lack of lysine catabolism, the amino acid accumulates in plasma and patients develop hyperlysinaemia.



# Summary

- •Both  $\alpha$ -amino acids and non- $\alpha$ -amino acids occur in nature, but proteins are synthesized using only L- $\alpha$ -amino acids.
- •The R groups of amino acids determine their unique biochemical functions.
- •Amino acids are classified as basic, acidic, aromatic, aliphatic, or sulfurcontaining based on the composition and properties of their R groups.

# Interaction with students

Distributed subtopics of today's lecture to students for participate in group discussion in next lecture.



# THANK YOU

WMM Filest Banker Count