

Structure of Amino Acids

Specific learning objectives

- Diverse functions of Proteins.
- Amino acids classification based on position of amino group and composition of R-group and nutritional requirement.
- Properties of Amino Acids.

Introduction

- Proteins are made up of hundreds of smaller units called amino acids that are attached to one another by peptide bonds, forming a long chain.
- Protein as a string of beads where each bead is an amino acid.

www.khanacademy.org

Diverse Functions of Proteins

- Enzymes: Serve as biological catalysts.
- **Defense:** Immunoglobulins and Interferon are proteins that protect the human against bacterial and viral infections.
- **Signaling:** Provide recognition/markers on surface of cells or organelles and can illicit intracellular responses.
- Movement: Motor proteins provide contractile movement/energy transformation.

Cont---

- Structural related proteins: Make up the structural-architecture of the cell or tissues.
- Storage related proteins: provide amino acids storage for growth and reproduction.
- Transport proteins: move molecules through membranes.

Amino-Acids Classification Based on Standard and Non-Standard Amino Acids

- Standard amino-acids
- Non-Standard amino-acids

General Structure of Common Amino Acids

- All proteins are composed of the 20 "standard "amino acids.
- Common central alpha (α)-carbon atom bound to a carboxylic acid group, an amino group and a hydrogen atom are covalently bonded.
- They have a primary amino group and a carboxylic acid group substituent on the same carbon atom, with the exception of proline, (has a secondary amino group).

$$R$$
 $|$
 $C_{\overline{\alpha}}$
 $COOH$
 $|$
 H

Fig.4.1. Biochemistry. 4th edition by Donald Voet and Judith G. Voet

Cont---

• Proline classified as an imino acid, its α -amine is a secondary amine with its a nitrogen having two covalent bonds to carbon (to the α -carbon and side chain carbon), rather than primary amine.

• Incorporation of the amino nitrogen into a five membered ring constrains the rotational freedom around the $-N_{\alpha}$ - C_{α} -bond in proline to specific rotational angle, reduces the structural flexibility of polypeptide regions containing proline.

Cont---

- Ionized form of a common amino acid in solution at physiological pH.
- Ionization state of an amino acid varies with pH.

- α-Amino group is protonated and in its ammonium ion form
- Carboxylic acid group is in its deprotonated or carboxylate ion form.

Fig.4.2. Biochemistry. 4th edition by Donald Voet and Judith G. Voet

Selenocysteine, the 21st Protein L-α-Amino Acids

- Selenocysteine are non-standard amino-acid.
- Selenium atom replaces the sulfur of its elemental analog, cysteine.
- Selenocysteine is not the product of a posttranslational modification, but is inserted directly into a growing polypeptide during translation.
- Incorporation of selenocysteine is specified by a large and complex genetic element for the unusual tRNA called tRNA_{Sec} which utilizes the UGA anticodon that normally signals STOP.

L-α-Amino Acids Serve Additional Role

- L- α amino acids and their derivatives participate in cellular functions (nerve transmission and biosynthesis of porphyrins, purines, pyrimidines, and urea).
- Thyroid hormones are formed from tyrosine; glutamate serves as neurotransmitter as well as the precursor of g-aminobutyric acid (GABA).
- Ornithine and citrulline are intermediates in urea biosynthesis.

- Homocysteine, homoserine, and glutamate-γ-semialdehyde participate in the intermediary metabolism of the protein amino acids.
- The protein amino acids phenylalanine and tyrosine serve as precursors of epinephrine, norepinephrine, and DOPA (dihydroxyphenylalanine).

Amino Acids Classified on the Basis of Nutritional Requirement

- Essential proteinogenic amino acids.
- Non-essential proteinogenic amino acids.

Amino-Acid Requirements of Humans

Nutritionally Essential	Nutritionally Nonessential
Arginine ¹	Alanine
Histidine	Asparagine
Isoleucine	Aspartate
Leucine	Cysteine
Lysine	Glutamate
Methionine	Glutamine
Phenylalanine	Glycine
Threonine	Hydroxyproline ²
Tryptophan	Hydroxylysine ²
Valine	Proline
	Serine
	Tyrosine

Amino-Acids Classification Based on Side Chain Groups

- Based on the **type of functional group (R group)** present amino acids are classified as: Aliphatic, aromatic, acidic, basic, acid amide, sulfur and cyclic amino acids.
- Based on the **characteristic of the functional group** amino acids are classified as: polar and non-polar amino acids.
- Based on the **site of attachment of the functional group**. They are also classified as: alpha, beta, gamma and delta amino acids.

Cont-TABLE 3-1 L-α-Amino Acids Present in Proteins

Name	Symbol	Structural Formula	p <i>K</i> ,	pK ₂	p <i>K</i> ₃
With Aliphatic Side Chains	Nonpolar/Hydrophobi	С	α-СООН	α-NH ₃ +	R Group
Glycine	Gly [G]	H-CH-COO- NH ₃ +	2.4	9.8	
Alanine	Ala [A]	CH3-CH-COO-	2.4	9.9	
		NH ₃ ⁺	Methyl R grou	р	
Valine	Val [V]	H³Ć	2.2	9.7	
		CH-CH-COO-	Isopropyl R gr	oup	
Leucine	Leu [L]	H₃C	2.3	9.7	
		CH-CH ₂ -CH-COO-	Branching in isobutyl sid	e chain on γ ca	rbon of amino
Isoleucine	lle [I]	CH₃	2.3	9.8	
		CH ₃			
		CH-CH-COO- CH ₃ NH ₃ ⁺	Branching in isobutyl sid	le chain on β ca	rbon of amino

Table 3.1. Harper's Illustrated Biochemistry 30 edition

Name	Symbol	Structural Formula	pK ₁	pK ₂	pK ₃		
With Side Chains Containing Hydroxylic (OH) Groups							
Serine	Ser [S]	CH ₂ -CH-COO-	2.2	9.2	about 13		
Polar, uncharged-R group		CH ₂ -CH-COO- OH NH ₃ ⁺	Hydroxymet	Hydroxymethyl R group			
Threonine	Thr [T]	CH ₃ CH CH COO	2.1	9.1	about 13		
Polar, uncharged-R group		CH ₃ - CH-CH-COO- OH NH ₃ +	Secondary Alcohol structure				
Tyrosine	Tyr [Y]	Mentioned in amino acids	Mentioned in amino acids with aromatic rings section				
With Side Chains Containing Sulfur Atoms			α-СООН	α-NH ₃ +	R Group		
Cysteine	Cys [C]	CH ₂ -CH-COO-	1.9	10.8	8.3		
Polar, uncharged-R group		CH ₂ -CH-COO- SH NH ₃ +	Thiolmethyl/Sulfhydryl R group				
Methionine Nonpolar	Met [M]	CH2- CH2-CH-COO	2.1	9.3			
		S- CH ₃ NH ₃ ⁺	Methyl ethyl thiol ether R grou				

Cont--

Name	Symbol	Structural Formula	pK ₁	pK ₂	pK ₃
With Side Chains Contain	With Side Chains Containing Acidic Groups or Their Amides				
Aspartic acid	Asp [D]	-OOC - CH ₂ - CH - COO-	2.1	9.9	3.9
Negatively charged R group		-OOC - CH ₂ - CH - COO- NH ₃ +	β-COOH R group		
Asparagine	Asn [N]	H ₂ N- C-CH ₂ -CH-COO-	2.1	8.8	
Polar, Uncharged-R group		H ₂ N- C- CH ₂ - CH-COO- 			
Glutamic acid	Glu [E]	-OOC - CH ₂ - CH ₂ - CH - COO-	2.1	9.5	4.1
Negatively charged R group		-OOC - CH ₂ - CH ₂ - CH - COO- NH ₃ ⁺	NH ₃ ⁺ γ-COOH R group		
Glutamine	Gin [Q]	H ₂ N- C- CH ₂ - CH ₂ - CH-COO-	2.2	9.1	
Polar, Uncharged-R group		H ₂ N- C- CH ₂ - CH ₂ - CH-COO- 0 NH ₃ ⁺			

Name	Symbol	Structural Formula	pK ₁	pK ₂	pK ₃
With Side Chains Cont	aining Basic Groups	Positively charged R groups			
Arginine	Arg [R]	H-N-CH ₂ -CH ₂ -CH ₂ -CH-COO- C=NH ₂ + NH ₃ +	1.8	9.0	12.5
		NH ₂	Guanidinium R group		
Lysine	Lys [K]	CH2-CH2-CH2-CH-COO-	2.2	9.2	10.8
		CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH-COO- NH ₃ + NH ₃ +	ε-NH+ ₃ R gr	oup	
Histidine	His [H]		1.8	9.3	6.0
		HN NH ₃ +	Imidazolium R group		

Name	Symbol	Structural Formula	pK ₁	pK ₂	pK ₃
Containing Aromatic Rin	gs				
Histidine	His [H]	Mentioned in amino acids with basic groups section			
Phenylalanine	Phe [F]	CH2-CH-COO-	2.2	9.2	
		CH ₂ -CH-COO- NH ₃ ⁺	Benzene rir	ng R group	
Tyrosine	Tyr [Y]	HO-CH2-CH-COO-	2.2	9.1	10.1
		NH ₃ ⁺	Phenol R gr	oup	
Tryptophan	Trp [W]	CH ₂ -CH-COO	2.4	9.4	
		CH ₂ -CH-COO- NH ₃ +	eterocyclic st	ructure, ind	lole R group
		H			
Imino Acid					
Proline	Pro [P]	, coo-	2.0	10.6	
		ш	nino group belo	ongs to a five-	-member ring

Figure 2.4
Alkyl side chains of valine, leucine, and isoleucine.

Aspartate R group

Glutamate R group

Figure 2.5 Side chains of aspartate and glutamate.

Fig. 2.5. Textbook of Biochemistry with Clinical Correlations, 4th edition by Thomas M Devlin

Guanidinium group (charged form) of arginine

Imidazolium group of histidine

Figure 2.6
Guanidinium and imidazolium groups
of arginine and histidine.

Properties of Amino Acids

Genetic Code Specifies 20 L-α-Amino Acids

- Proteins are synthesized from the set of 20 L- α -amino acids encoded by nucleotide triplets called codons.
- Common amino acids are those for which at least one specific codon exists in the DNA genetic code.
- Sequences of peptides and proteins represent by using one- and three letter abbreviations for each amino acid.

Cont---

Genetic information is transcribed from a DNA sequence into mRNA and then translated to the amino acid sequence of a protein

Fig. 2.1. Textbook of Biochemistry with Clinical Correlations, 4th edition by Thomas M Devlin

Summary

- Functions of Proteins: transport, defense, movement, storage, signaling etc.
- Both α -amino acids and non- α -amino acids occur in nature, but proteins are synthesized using only L- α -amino acids.
- The R groups of amino acids determine their unique biochemical functions.
- Amino acids are classified as basic, acidic, aromatic, aliphatic, or sulfur-containing based on the composition and properties of their R groups.

Interaction with students

 Distributed subtopics of class to students to participate in group discussion in next class.

Reference Books

- 1) Harper's Illustrated Biochemistry-30th edition
- Textbook of Biochemistry with Clinical Correlations. 4th edition. Thomas M. Devlin.
- 3) Biochemistry. 4th edition. Donald Voet and Judith G. Voet.
- 4) Biochemistry 7th edition by Jeremy M. Berg, John L. Tymoczko and Lubert Stryer
- 5) Lehninger Principles of Biochemistry

Thank you

WWW.FilestRanker.com