

Enzyme Kinetics 2018

Learning Objectives

- Enzyme Kinetics
- ► Enzyme Inhibition
- Drugs utilizing kinetics and inhibition and its clinical utility

www.FirstRanker.com

Enzyme Kinetics

the quantitative measurement of the rates of enzyme-catalyzed reactions and the systematic study of factors that affect these rates

Catalysts

- ▶ Increase rate of reaction by factor of 10⁶
- ▶ Highly selective and specific
- Not changed as a result of catalysis
- Does not change the equilibrium constant
- Enzymes Alter Only the Reaction Rate and Not the Reaction Equilibrium

Factors affecting reaction velocity

Substrate concentration

► The rate of an enzyme-catalyzed reaction increases with substrate concentration until a maximal velocity (Vmax) is reached

Temperature

- Bell shaped curve
- Increase of velocity with temperature
- Decrease of velocity with higher temperature

pН

- ▶ Bell shaped curve
- ▶ Effect of pH on the ionization of the active site
- ▶ Effect of pH on enzyme denaturation
- Variable pH optimum

Kinetic Order of Reaction

- ▶ Sum of the molar ratios of the reactants defines the **kinetic order** of the reaction
- ► First order
- Second order
- Pseudofirst order reaction

Michaelis Menten Equation

1/2Vmax
[Vo]
Km
ion [S]

Relationship between initial velocity and substrate concentration

Km and its importance

The Michaelis constant **Km** is the **substrate concentration** at which **Vi** is half the maximal velocity **(Vmax/2)** attainable at a particular concentration of the enzyme.

Unit?

- Reflects the affinity of the enzyme for that substrate: inverse relationship
- Specific for enzyme substrate combination
- Order of reaction

Clinical importance of Km

Difference between Hexokinase and Glucokinase

▶ Hexokinase vs Glucokinase

	Hexokinase	Glucokinase
Substrate specificity	All hexoses	Mainly Glucose
Km	Low (high affinity) Works at normal glucose concentration	High (low affinity) works only when glucose levels are elevated
Location	Universal	Mainly liver and Beta cells of pancreas
Vmax (rate of reaction)	Low	High
Glucose-6-PO4 (Allosteric inhibition)	Inhibits the enzyme	No inhibition
Insulin	No regulation	Positive regulation

Line-Weaver Burk plot

- Double Reciprocal Graph
- Linear curve

Linear form of Michaelis menten equation to Determine Km and Vmax.

Units of Enzyme activity

- Amount of substrate converted to product per unit time under standard conditions of pH and Temperature
- IUB unit: Katal (µmol/min)
- SI Unit: (mol/sec)

Relative activities of Enzymes

- ▶ Specific activity (Vmax/protein concentration): Impure Enzymes
- ► Turnover number(Vmax/moles of enzyme): Homogenous Enzymes
- ► Catalytic constant, Kcat [Vmax/No. of active sites(St)]: unit time-1
- Catalytic efficiency: Kcat/Km (Carbonic anhydrase, ADA, acetylylcholinesterase)

Two substrate Reactions(Bi Bi Reactions)

Sequential : Random

Ordered

► Ping Pong: Double displacement reactions

Two substrate Reactions

$$E + S_1 \Longrightarrow ES_1 \overset{S_2}{\Longleftrightarrow} ES_1S_2 \longrightarrow E + P_1 + P_2$$
 Ordered/Sequential

$$E + S_1 \Longrightarrow ES_1 \Longrightarrow E'P_1 \stackrel{P_1}{\Longleftrightarrow} E' \stackrel{S_2}{\Longleftrightarrow} E'S_2 \longrightarrow E + P_2 \quad \text{Ping Pong/Double Displacement}$$

Enzyme Inhibition

Types of Inhibitions based on kinetics

- Competitive Inhibition
- Non-Competitive Inhibition
- Un-Competitive inhibition

Competitive Inhibition

- Binding at substrate binding site
- ▶ Inhibitor similar to substrate
- Km increased
- Vmax same

Clinical Application/Drugs

Statin Drugs

Competitive Inhibitors of HMG CoA reductase

Sulpha Drug (Str. Analogues of PABA)

Inhibits Folic acid synthesis in Bacteria

Methanol Poisoning

Non-Competitive Inhibition

- Substrate and inhibitor binds at different sites
- Not structural analogues
- Decrease Vmax
- Km same

Drugs/Toxins based on Non - Competitive Inhibition

- ► Ferrochelatase (Inhibition by **Lead**)
- ► Acetylcholinesterase (Insecticides)
- Cytochrome oxidase(Cyanide)

www.FirstRanker.com

Uncompetitive Inhibition

- ► Inhibitor binds to ES Complex
- Both Km and Vmax decreases

$$E+S \xrightarrow{K_S} ES \xrightarrow{k_P} E+P$$

$$I$$

$$\downarrow \uparrow K_I$$

$$ESI$$

Examples of Drugs showing Uncompetitive Inhibition

- ▶ Lithium (Inositol monophosphatase)
- Phenylalanine(Placental ALP)

Classification based on Reversibility

- Reversible
- ▶ Irreversible: Chemical modification or Covalent modification

Irreversible inhibitors Poison Enzymes

- Diisopropylflurophosphate (nerve gas): covalently binds acetylcholinestrase
- ► Aspirin(Cox)
- ▶ Penicillin (bacterial transpeptidase)

Mechanism Based Inhibition

- Suicide Inhibition
- Contains chemical group that is transformed by catalytic machinery
- Generates highly reactive group
- ▶ Binds covalently to catalytically essential residues

Drugs based on Suicide Inhibition

- ► Allopurinol (inhibits xanthine oxidase: Oxypurinol)
- ▶ **5 fluorouracil** (inhibits thymidylate synthase: FdUMP)

Transition state Analogs & Abzymes

- ► Transition state analog: A molecule with shape similar to transition state
- Catalytic Antibodies
- Abzymes created using transition state analog as antigens

Clinical Scenario 1

A 45-year-old man presents to emergency with bradycardia, blurred vision, vomiting, increased and salivation. He is a farmer using OPC Spray for his field and pipe ruptured. Type of inhibition?

- ► (A) Competitive
- ▶ (B) Noncompetitive
- ▶ (C) Uncompetitive
- ▶ (D) Irreversible

Clinical scenario 2

- ► A 35 year old lady comes to OPD with evening fatigue, eyelid drooping, dysphagia and slurred speech. A drug is administered with following effect. What is true
- a. Competitive: Vmax same, km increased
- b. Competitive: Vmax same, km decreased
- c. Non-competitive: Vmax decreased, Km same
- d. Non-competitive: Vmax decreased, Km decreased

Clinical Scenario 3

A patient wants to go to Manali for trekking. He took a medicine for mountain sickness with following kinetics. What is the type of inhibition?

- ▶ B. Noncompetitive
- ▶ C. Uncompetitive
- D. Allosteric

