Roll No. \square
Total No. of Questions: 09

M.Sc.(Chemistry) (2015 to 2017) (Sem.-1) MATHEMATICS IN CHEMISTRY
 Subject Code : MSCH-103
 M.Code : 72262

Time : 3 Hrs.
Max. Marks : 100

INSTRUCTIONS TO CANDIDATES :

1. Attempt FIVE questions in ALL including Question no. 1 which is COMPULSORY and selecting ONE EACH from Unit I to IV.
2. All questions carry EQUAL marks.
3. Write briefly :
a) Give the drawback of Gauss elimination method.
b) Give Newton's backward difference formula.
c) Evaluate the first approximation from $\frac{d y}{d x}=x^{2} y-1, y(0)=1$ using Picard's method.
d) Using Euler's method, find an approximate value of $y(0.2)$ from $\frac{d y}{d x}=x+y, y(0.1)=1.22$.
e) Classify the following PDE $x^{2} \frac{\partial^{2} u}{\partial x^{2}}+\left(1-y^{2}\right) \frac{\partial^{2} u}{\partial y^{2}}=0$.
f) Give regression line x on y and y on x.
g) Give four properties of normal distribution.
h) Define null hypothesis by giving suitable example.
i) Give four properties of F distribution.
j) Give four properties of χ^{2} distribution.

UNIT-I

2. a) Solve using Gauss elimination method

$$
\begin{aligned}
& 2 x+2 y+z=12 \\
& 3 x+2 y+2 z=8 \\
& 5 x+10 y-8 z=10 .
\end{aligned}
$$

b) Solve by Jacobi's method $20 x+y-2 z=17,3 x+20 y-z=-18,2 x-3 y+20 z=25$.
3. a) Find $\frac{d y}{d x}$ at $x=1.6$ and $\frac{d^{2} y}{d x^{2}}$ at $x=1.1$ from the following data:

\boldsymbol{x}	1.0	1.1	1.2	1.3	1.4	1.5	1.6
\boldsymbol{y}	7.989	8.403	8.781	9.129	9.451	9.750	10.031

b) Evaluate $\int_{0}^{6} \frac{1}{1+x^{2}} d x$ using Simpson's $1 / 3$ rule.

UNIT-II

4. a) Using Taylor's series method, find value of $y(0.2)$ from $\frac{d y}{d x}=2 y+3 e^{x}, y(0)=0$
b) Using modified Euler's method, find value of $y(0.3)$ from $\frac{d y}{d x}=\sqrt{x+y}, y(0)=1$.
5. Using Runge-Kutta method, find value of $y(0.2)$ and $y(0.4)$ from $\frac{d y}{d x}=\frac{y-x}{y+x}, y(0)=1$.

UNIT-III

6. a) Calculate the coefficient of correlation from the following data :

\boldsymbol{x}	105	104	102	101	100	99	98	96	93	92
\boldsymbol{y}	101	103	100	98	95	96	104	92	97	94

b) A has one share in a lottery in which there is 1 prize and 2 blanks; B has three shares in a lottery in which there are 3 prizes and 6 blanks. Compare the probability of A's success to that of B's success.
7. a) In sampling a large number of parts manufactured by a machine, the mean number of defective in a sample of 20 is 2 . Out of 1000 such samples, how many would be expected to contain at least 3 defective parts.
b) Fit a Poisson distribution to the data:

\boldsymbol{x}	0	1	2	3	4
\boldsymbol{f}	122	60	15	2	1

UNIT - IV

8. a) A die was thrown 9000 times and a throw of 5 or 6 was obtained 3240 times. On the assumption of random throwing, do the data indicate an unbiased die? (take $z_{0.05}=1.96$)
b) A sample height of 6400 soldiers has a mean of 67.85 inches and a standard deviation of 2.56 inches while a simple sample of heights of 1600 sailors has a mean of 68.55 inches and a standard deviation of 2.52 inches. Do the data indicate that the sailors are on the average taller than soldiers? (take $z_{0.05}=1.96$)
9. a) The nine items of a sample have the following values $45,47,50,52,48,47,49,53$, 51. Does the mean of these differ significantly from the assumed mean of 47.5 ? (for $v=8, t_{0.05}=2.31$)
b) A set of five similar coins is tossed 320 times and the result is :

No. of heads	0	1	2	3	4	5
Frequency	6	27	72	112	71	32

Test the hypothesis that the data follows a Binomial distribution.

$$
\left(\text { for } v=5, \chi_{0.05}^{2}\right.
$$

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

