

www.FirstRanker.com

www.FirstRanker.com

Roll No.	tal No.	of	Pages	: (03
----------	---------	----	-------	-----	----

Total No. of Questions: 09

M.Sc.(Chemistry) (2015 to 2017) (Sem.-2)

QUANTUM CHEMISTRY Subject Code : MSCH-204

M.Code: 71665

Time: 3 Hrs. Max. Marks: 100

INSTRUCTION TO CANDIDATES:

 Atttempt FIVE questions in all selecting ONE question from each UNIT. All questions carry equal marks.

Q. No. 1 is Compulsory.

Answer Briefly :

 $(2 \times 10 = 20)$

a) Determine whether the following operator is linear or nonlinear :

$$\hat{A} f(x) = x^2 f(x)$$

- Show that the functions ψ, –ψ and 2iψ represent same state; ψ being real.
- c) Calculate the number of radial node and angular node of 4d orbital.
- d) What is the complex conjugate of the wave function ($\psi = 4 + 3i$)?
- e) Calculate the number of degenerate states for Hydrogen atom for n = 4.
- Determine whether the given statement is true or false. Justify your choice.

The function $\exp \left[-\alpha x^2\right]$ is an acceptable wave function.

- g) Write down the Hamiltonian equation of He atom.
- h) A particle in one dimensional box simple harmonic oscillator in x-direction is perturbed by a potential λx. What is the 1st order correction for ground state?
- Calculate the magnitude of the angular momentum of an electron that occupies the following atomic orbitals: 1s and 3d.
- Calculate the number of radial node and angular node of 3p orbital.

1 M-71665 (S17)-1724

www.FirstRanker.com

www.FirstRanker.com

UNIT-I

- 2. a) If A is a linear operator and $A\psi_1 = a\psi_1$ and $A\psi_2 = a\psi_2$ then prove that any linear combination of ψ_1 and ψ_2 say $C_1\psi_1 + C_2\psi_2$ or $C_1\psi_1 - C_2\psi_2$ is an eigen function of 'A' with the same eigen value 'a' where C₁ and C₂ are constants.
 - State Heisenberg's uncertainty principle and using it show that electrons cannot reside in nucleus.
 - b) Calculate the expectation value of x-component of momentum of a free particle in a box of length 1, $\psi = \sqrt{\frac{2}{t}} \sin\left(\frac{n\pi x}{l}\right)$. Show that e^{ax} is an eigen function of the operator d"/dx". What is the eigen value? Prove that eigen values of Hermitian operator are (10, 10)
- a) Write down the quantum mechanical postulates with proper explanation. 3.
 - b) For the ground state of a particle in 1-d box, calculate <p_x> and <(p_x)²>. Explain the physical interpretations of your outcomes. (10, 10)

- a) Find out the probability of finding the 1s electron within the first Bohr orbit ao. 4. Tabulate all of the allowed microstates of p2 electronic configuration.
 - b) Sketch ψ and $|\psi|^2$ for n=1, $n\neq 2$ states of a particle in a one dimensional box of length 1 and indicate the most likely locations of the particle in these states. (10, 10)
- 5. a) Plot the shapes (polar plots) of the atomic orbitals corresponding to 2px, 2py and 2pz for a hydrogen-like atom using the following equations:

$$\psi_{2p_x} = A \sin \theta \cos \phi$$
, $\psi_{2p_y} = A \sin \theta \cdot \sin \phi \cdot and \psi_{2p_z} = A \cos \theta$

 $\psi_{2p_s} = A \sin\theta \cos\phi, \ \psi_{2p_s} = A \sin\theta . \sin\phi \, and \\ \psi_{2p_s} = A \cos\theta$ Where, $A = \frac{1}{4\sqrt{2\pi}} Z^{5/2} r e^{-Zr/2}$. Denote the range of θ and ϕ used for the polar plots and label the axes properly.

 Find out the probability density of finding the 1s electron of hydrogen atom described by the wave function $\frac{1}{\sqrt{\pi}} \left(\frac{1}{a_0} \right) \left(2 - \frac{r}{a_0} \right)^{3/2} e^{-r/2a_0}$ at the nucleus and at a distance a_0 from the nucleus. Also find out the relative probability of finding the 1s electron in Bohr's first orbit and at a distance of 1×10^{-4} a₀ from the nucleus.

(S17)-1724 2 | M-71665

UNIT-III

- 6. a) Calculate the energy value of H2 molecule ion by using LCAO-MO wave function.
 - b) Write a short note on degenerate perturbation theory.

(10,10)

- a) Briefly describe the differences between perturbation method and variation method. Calculate the bond order of the following molecules: (i) He₂, (ii) H₂, (iii) H₂²⁺, (iv) He₂²⁺ and (v) H₂⁺
 - b) State and prove the variation theorem.

(10,10)

UNIT-IV

- a) Derive the Huckel MO theory for ethylene/ethane. Draw simple schematics of the bonding and anti-bonding energy level diagrams.
 - b) Draw and explain the MO diagram of H₂O.

(10,10)

- a) Derive the Huckel MO theory for 1,3-butadiene. Draw simple schematics of the bonding and anti-bonding energy level diagrams.
 - b) Write a short note on Born-Openheimer approximation method.

(10,10)

NOTE: Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

3 M-71665 (S17)-1724

