

www.FirstRanker.com

www.FirstRanker.com

Roll No.	Total No. of Pages:02
Total No. of Questions : 11	
M.Sc (Chemistry) (2018 Bat	ch) (Sem2)
PHYSICAL CHEMIS	TRY - II
Subject Code : CHL-	-413-18
M.Code: 7598	3
Time : 3 Hrs.	Max. Marks:70

INSTRUCTIONS TO CANDIDATES :

- 1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- SECTION-B contains EIGHT questions carrying FIVE marks each and students 2. have to attempt any SIX questions.
- SECTION-C will comprise of two compulsory questions with internal choice in both these 3. questions. Each question carries TEN marks.

SECTION-A

Q.1 **Answer Briefly**

- a. Write down time independent Schrödinger equation and explain all the terms.
- b. Check the acceptability of the following function :

$$\sqrt{\frac{2}{L}}\sin\frac{n\pi x}{L}$$
 in the range (0 to L)

c. Determine whether the following operator is linear or nonlinear.

$$\frac{d^2}{dx^2}$$

d. Determine whether the following functions are normizable or not over the indicated intervals :

 $\sin x (0, \pi)$

- e. Why the value of $\psi^*\psi$ be finite everywhere?
- Show that if the linear operators A and B have common complete set of eigen f. functions, then A and B commute.
- g. For a particle in a cubical box what is the degeneracy of the level that has energy 14/3times that of the lowest level?
- h. Write the ground state term symbols for the following electronic configurations of $3d^2$ and 2p³.
- i. Calculate the number of radial node and angular node of 5d orbital.
- Calculate the momentum of a photon having wavelength 200 nm. j.

www.FirstRanker.com

SECTION-B

- 2. The wave function ψ of a certain system is a linear combination of following : $\psi = \sqrt{\frac{1}{2}} \psi 1 + \sqrt{\frac{3}{2}} \psi_2$, where ψ_1 and ψ_2 are the eigen functions with eigen value E_1 and E_2 . What is probability that the system energy will be observed to be E_2 ?
- 3. Show that the function $\psi = xe^{-ax^2}$ is an eigen function of the operator $\frac{d^2}{dx^2} 4a^2x^2$. What is its eigen value?
- 4. Calculate the probability that a particle in 1-D box of length L is found between 0 and L/2.
- 5. Determine the value of A_m so that the wave function $\psi_m(\phi) = A_m e^{im^{\phi}}$, where, $m = 0, \pm 1$, $\pm 2 \ (0 \le \phi \le 2\pi)$ are normalized.
- 6. A particle in one dimensional box simple harmonic oscillator in x-direction is perturbed by a potential λx . What is the 1st order correction for ground state?
- 7. Find out $\langle P_x \rangle$ for a harmonic oscillator in its ground state.
- 8. Write a short note on Russel-Saunders (R-S) coupling.
- 9. Arrange the following states (term symbols) for p^2 configuration in the increasing order of energy : ¹D, ³P and ¹S. Justify the trend of the result.

SECTION-C

10. The radial function for a 2s electron in hydrogen atom is given by :

Determine the number and location of node(s) in the 2s wave function. Plot the plot of R_{2s} against 'r' and also the radial distribution plot for R_{2s} .

OR

- 10. Write the electronic Hamiltonian of a hydrogen molecule ion (H_2^+) and explain each term briefly and clearly with the help of a schematic diagram.
- 11. Derive the Huckel MO theory for ethylene. Draw simple schematics of the bonding and anti-bonding energy level diagrams.

OR

11. Describe the variation theory and prove the same in detail.

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

2 | M-75983