Roll No. \square Total No. of Pages : 02
Total No. of Questions: 11

M.Sc (Chemistry) (2018 Batch) (Sem.-2)
 PHYSICAL CHEMISTRY - II
 Subject Code: CHL-413-18
 M.Code : 75983

Time : 3 Hrs.
Max. Marks : 70

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains EIGHT questions carrying FIVE marks each and students have to attempt any SIX questions.
3. SECTION-C will comprise of two compulsory questions with internal choice in both these questions. Each question carries TEN marks.

SECTION-A

Q. $1 \quad$ Answer Briefly

a. Write down time independent Schrödinger equation and explain all the terms.
b. Check the acceptability of the following function :

$$
\sqrt{\frac{2}{L}} \sin \frac{n \pi x}{L} \text { in the range }(0 \text { to } \mathrm{L})
$$

c. Determine whether the following operator is linear or nonlinear.

$$
\frac{d^{2}}{d x^{2}}
$$

d. Determine whether the following functions are normizable or not over the indicated intervals :

$$
\operatorname{Sin} x(0, \pi)
$$

e. Why the value of $\psi^{*} \psi$ be finite everywhere?
f. Show that if the linear operators A and B have common complete set of eigen functions, then A and B commute.
g. For a particle in a cubical box what is the degeneracy of the level that has energy $14 / 3$ times that of the lowest level?
h. Write the ground state term symbols for the following electronic configurations of $3 \mathrm{~d}^{2}$ and $2 \mathrm{p}^{3}$.
i. Calculate the number of radial node and angular node of 5 d orbital.
j. Calculate the momentum of a photon having wavelength 200 nm .

SECTION-B

2. The wave function ψ of a certain system is a linear combination of following : $\psi=\sqrt{\frac{1}{2}} \psi 1+\sqrt{\frac{3}{2}} \psi_{2}$, where ψ_{1} and ψ_{2} are the eigen functions with eigen value E_{1} and E_{2}. What is probability that the system energy will be observed to be E_{2} ?
3. Show that the function $\psi=x e^{-a x^{2}}$ is an eigen function of the operator $\frac{d^{2}}{d x^{2}}-4 a^{2} x^{2}$. What is its eigen value?
4. Calculate the probability that a particle in 1-D box of length L is found between 0 and L/2.
5. Determine the value of A_{m} so that the wave function $\psi_{m}(\phi)=A_{m} e^{i m^{\phi}}$, where, $m=0, \pm 1$, $\pm 2(0 \leq \phi \leq 2 \pi)$ are normalized.
6. A particle in one dimensional box simple harmonic oscillator in x-direction is perturbed by a potential λx. What is the $1^{\text {st }}$ order correction for ground state?
7. Find out $\left.<\mathrm{P}_{\mathrm{x}}\right\rangle$ for a harmonic oscillator in its ground state.
8. Write a short note on Russel-Saunders (R-S) coupling.
9. Arrange the following states (term symbols) for p^{2} configuration in the increasing order of energy: ${ }^{1} \mathrm{D},{ }^{3} \mathrm{P}$ and ${ }^{1} \mathrm{~S}$. Justify the trend of the result.

SECTION-C

10. The radial function for a 2 s electron in hydrogen atom is given by :

$$
R_{2 s}=\frac{D}{\sqrt{2}}\left(\frac{1}{a_{0}}\right)^{3 / 2}\left(1-\frac{r}{2 a_{0}}\right) e^{-r / 2 a_{0}}
$$

Determine the number and location of node(s) in the 2 s wave function. Plot the plot of $\mathrm{R}_{2 \mathrm{~s}}$ against ' r ' and also the radial distribution plot for $\mathrm{R}_{2 \mathrm{~s}}$.

OR

10. Write the electronic Hamiltonian of a hydrogen molecule ion $\left(\mathrm{H}_{2}{ }^{+}\right)$and explain each term briefly and clearly with the help of a schematic diagram.
11. Derive the Huckel MO theory for ethylene. Draw simple schematics of the bonding and anti-bonding energy level diagrams.

OR

11. Describe the variation theory and prove the same in detail.

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

