Roll No. \square Total No. of Pages : 02
Total No. of Questions : 19
M.Sc. (Chemistry) (Campus) (2015 to 2017) (Sem.-1)

MATHEMATICS
Subject Code : CHL-405M
M.Code : 51207

Time : 3 Hrs.

Max. Marks : 70

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains SIX questions carrying FIVE marks each and students have to attempt ALL questions.
3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

Answer briefly :

1. Let $u=2 i-j+k$ and $w=i+2 k$ are two vectors' find the cross product $v \times w$ and dot product u.w.
2. Find the gradient of scalar point function $\phi(x, y, z)=x^{2} y z$ at the point $(1,-1,2)$
3. Find X and Y if $X+Y=\left[\begin{array}{rr}1 & 3 \\ 2 & -4\end{array}\right]$ and $X-Y=\left[\begin{array}{rr}10 & -3 \\ 5 & 4\end{array}\right]$.
4. Define a Hermitian matrix.
5. Find $\frac{d y}{d x}$ where $y=2 \cos \sqrt{x}$.
6. Evaluate the integral $\int\left(x^{5}+1\right)^{7} x^{4} d x$.
7. Solve the differential equation $\frac{d y}{d x}=\left(1+x^{2}\right)(y-1)$.
8. Write down the differential equation of a harmonic oscillator.
9. Find the probability of outcome 10 from two throws of a dice.
10. In how many ways a committee consisting of 3 men and 2 men can be chosen from 7 men and 5 women?

SECTION-B

11. If $i+j+k, 2 i+5 j, 3 i+2 j-3 k$ and $i-6 j-k$ are the position vectors of points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D respectively, then find the angle between $\overrightarrow{A B}$ and $\overrightarrow{C D}$.
12. Solve the following system of equations using matrix method.
$2 x-3 y+4 z=8, y-3 z=-7, x+2 y+2 z=11$
13. Find local maximum and minimum values of the function $f(x)=3 x^{4}+4 x^{3}-12 x^{2}+12$.
14. Find the general solution of the following differential equation :
$\left(x^{2}+y^{2}+x\right) d x+2 x y d y=0$
15. Fit least square straight line to the following data points :

$\mathbf{X}:$	1	2	3	4	5	6
$\mathbf{Y}:$	6	4	3	5	4	2

16. Find the product of AB where $\mathrm{A}=\left[\begin{array}{rrr}1 & 0 & 1 \\ 2 & 4 & 2 \\ 10 & 1 & 3\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{rrr}2 & 0 & -1 \\ 0 & 1 & 2 \\ 1 & 2 & 3\end{array}\right]$

SECTION-C

17. Solve the Huckel Molecular - orbital problem for the allyl radical
$\mathrm{CH}_{2} \mathrm{CHCH}_{2}$ in terms of the Huckel parameters α and β :
$(\alpha-E) c_{1}+\beta c_{2}=0$
$\beta c_{1}+(\alpha-\mathrm{E}) c_{2}+\beta c_{3}=0$
$\beta c_{2}+(\alpha-E) c_{3}=0$
18. Find the Fourier series for $f(x)=x+x^{2},-\pi \leq x \leq \pi$.
19. Evaluate the integral $\int \frac{d x}{(x+1)^{2}(x-2)}$ by resolving into partial fractions.

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

