

Avascular Necrosis

Learning Objectives

- Atraumatic /Traumatic AVN
- Understand the pathology of AVN
- Progression of disease
- Classification of Hip AVN
- Principles of treatment

27 years old ,pain right groin

- Non smoker, occasional alcohol intake, no medical history
- On examination.
 - No Tenderness
 - Restricted internal rotation ,painful
 - No limp
- CBC Normal, Rheumatoid factor –ve, ESR 18mm, CRP -6

Radiographs

www.FirstRanker.com

Q1 Which of the following is an inappropriate diagnosis?

- a) Early Sero-Negative Rheumatoid arthritis
- b) Avascular necrosis right hip
- c) Tubercular arthritis right hip
- d) Torn acetabular labrum

Q 2 The most appropriate investigation for him is?

- a) Tc 99 bone scan
- b) MRI scan
- c) MARS MRI
- d) Contrast enhanced CT Scan

Q3 This is classifiable as Ficat-Arlet-

- a) Stage 1
- b) Stage 2
- c) Stage 3
- d) Stage 4

Q 4 The most appropriate treatment?

- a) Non operative with follow up MRI at 6 weeks
- b) Non weight bearing and analgesics
- c) Bed rest, traction and analgesics
- d) Core decompression

Q 5 The patient comes after 2 years and has severe pain in his hip, decreased ROM and a pronounced limp. Radiographs reveal collapse of the head with decreased joint space suggestive of secondary OA. The appropriate management is-

- a) Arthroscopic debridement and irrigation
- b) Osteochondral grafting
- c) Bipolar hip arthroplasty
- d) Total hip arthroplasty

Overview

- AVN is a major cause of hip pain
- Traumatic/Atraumatic in etiology
- Evaluation is difficult
- Treatment is hip salvage/Replacement
- Other common areas are –Humerus, scaphoid, talus and distal femur

Avascular necrosis- Traumatic

- Femoral neck fractures- severance of the blood supply to the femoral head.
- The capitulum
- Femoral condyles
- Proximal parts of the scaphoid and talus.

Distant parts of the bone's vascular territory

Largely enclosed by cartilage- restricted access to local blood vessels.

TRAUMATIC OSTEONECROSIS

- Fractures and dislocations of the hip
- Tear of retinacular vessels supplying the femoral head
- Displaced fractures of the femoral neck AVN 20%.

fractures of the scaphoid and talus- AVN

- Principal vessels enter their distal ends
- Intraosseous course from distal to proximal.

Closed compartment-Bone

- Vascular sinusoids- no adventitial layer
- Patency volume and pressure of the marrow tissue
- Marrow is encased in unyielding bone.
- One element can expand-other gets compressed

NON-TRAUMATIC OSTEONECROSIS

- Intravascular stasis
- Thrombosis
- Extravascular swelling and capillary compression.

Ischaemia- Multifactorial

- Severance of the local blood supply
- Venous stasis and retrograde arteriolar stoppage
- Intravascular thrombosis
- Compression of capillaries and sinusoids by marrow swelling.

Nontraumatic -AVN

- Perthes' disease,
- Caisson disease
- Gaucher's disease systemic lupus erythematosus

Sickle-cell disease Dysbaric ischaemia Thrombocytopenia Fat embolism

Arteriolar occlusion

Marrow edema

Vascular stasis

Sinusoidal compression

Gaucher's disease Tuberculosis Cortisone/alcohol

Dysbaric ischa eww FirstRanker.com

Normal head femur

Pathology and natural history

- Prolonged anoxia Osteocyte death
- Gross appearance remains unaltered
- Striking histological changes in the marrow
 - Loss of fat cell outlines
 - Inflammatory cell infiltration
 - Marrow oedema
 - Replacement of necrotic marrow- mesenchymal tissue.

Bone repair?

- New blood vessels and osteoblastic proliferation at the interface between ischaemic and live bone.
- Vascular granulation tissue advances from the surviving trabeculae
- New bone is laid down upon the dead- creeping substitution
- Increase in mineral mass increased density or 'sclerosis'.

Further progress

- Reparative formation proceeds slowly
- Advances 8–10 mm into the necrotic zone.
- Structural failure begins- most heavily stressed part of the necrotic segment.
- Linear tangential fracture close to the articular surface.

Stage of arthritis

- Articular cartilage retains its thickness and viability for a long time.
- In the final stages- fragmentation collapse of the necrotic bone
- Progressive deformity and destruction of the joint surface.

Clinical features

- The earliest stage of bone death is asymptomatic
- Patient presents with pain lesion is usually well advanced.
- Pain in or near a joint
- Few complain of a 'click' in the joint- due to snapping or catching of a loose articular fragment.

Stage of arthritis

- Joint becomes stiff and deformed.
- Local tenderness may be present
- Superficial joints- effusion.
- Movements –may be restricted
- Advanced cases- fixed deformities.

Radiographs

- The early signs of ischaemia -bone marrow and cannot be detected.
- 3 months after the onset of ischaemia- first sign
- Reactive new bone formation at the boundary of the ischaemic area sclerosis

www.FirstRanker.com

www.FirstRanker.com

Thin tangential fracture line just below the articular surface —the 'crescent sign'.

Late -collapse and distortion of the articular

surface

MRI Scan

- The most sensitive modality marrow changes are discernable
- The size of the necrotic segment-hypo-intense band in the T1,MRI

AVN –Distal femur

AVN Talus

AVN -Capitulum

Radionuclide scanning

- 99mTcsulphur colloid- taken up in myeloid tissue.
- Useful in traumatic avascular necrosis- large segment of bone is involved.
- Sickle-cell disease 'cold' area contrasts significantly with the generally high nuclide uptake due to increased erythroblastic activity.

Staging the lesion

- Ficat and Arlet (1980) introduced the concept of *radiographic staging* for osteonecrosis of the hip
- Early (pre-symptomatic) signs- sclerosis, crescent sign.
- Later features- progressive demarcation and collapse of the necrotic segment in the femoral head.

Stage 1 – No radiological changes

- Diagnosis was based on measurement of raised intraosseous pressure
- Histological features of bone biopsy
- MRI

Stage II

- The femoral head contour was still normal
- Early signs of reactive change in the subchondral area

Stage 3

- Signs of osteonecrosis with evidence of structural damage and distortion of the bone outline.
- Collapse of the necrotic segment

Stage 4

• Collapse of the articular surface and signs of secondary OA.

Diagnosis of the underlying disorder

- Episode of trauma- obvious
- Occupation- deep-sea diving or working under compressed air
- Family background of Gaucher's disease or sickle-cell disease.
- High-dosage corticosteroid administration; renal transplantation.
- Low dose use –quacks, inappropriate use
- Alcohol abuse is often difficult to determine
- SLE- antiphospholipid antibodies may be measured.

EARLY OSTEONECROSIS

- Bone contour is intact- structural failure can be prevented.
- Some lesions heal spontaneously and with minimal deformity;
 - Non-weightbearing joints
 - Superomedial part of the femoral head
 - Non- weight bearing surfaces of the femoral condyles and talus.

Weight bearing joints

- Poor prognosis-I probably end in structural failure
- Simple measures like non weight bearing- reduce loading.
- If the bone contour is still intact, an 'unloading' osteotomy
- Help to preserve the anatomy while remodelling proceeds.
- Medullary decompression and bone grafting may have a place

Stage II- Core decompression B/L

LATE STAGE OSTEONECROSIS

- Destruction of the articular surface may be give rise to pain and severe loss of function.
- non-operative management, concentrating on pain control, modification of daily activities and appropriate, splintage of the joint
- Arthrodesis of the joint, e.g. the ankle or wrist
- Total joint replacement- shoulder, hip and knee.

Q1 Which of the following is an inappropriate diagnosis?

- a) Early Sero-Negative Rheumatoid arthritis
- b) Avascular necrosis right hip
- c) Tubercular arthritis right hip
- d) Torn acetabular labrum

Q 2 The most appropriate investigation for him is?

- a) Tc 99 bone scan
- b) MRI scan
- c) MARS MRI
- d) Contrast enhanced CT Scan

Q3 This is classifiable as Ficat-Arlet-

- a) Stage 1
- b) Stage 2
- c) Stage 3
- d) Stage 4

Q 4 The most appropriate treatment?

- a) Non operative with follow up MRI at 6 weeks
- b) Non weight bearing and analgesics
- c) Bed rest, traction and analgesics
- d) Core decompression

Q 5 The patient comes after 2 years and has severe pain in his hip, decreased ROM and a pronounced limp. Radiographs reveal collapse of the head with decreased joint space suggestive of secondary OA. The appropriate management is-

- a) Arthroscopic debridement and irrigation
- b) Osteochondral grafting
- c) Bipolar hip arthroplasty
- d) Total hip arthroplasty

Conclusion

- AVN is difficult to diagnose early- High degree of suspicion
- Radiographs in early stages are normal- Trust your findings more!
- Best modality for early diagnosis MRI
- Salvage can be tried for Stage I,II
- Advanced stages require Total hip arthroplasty