

ABG (Arterial Blood Gas)

The basic physiology of acid -base balance

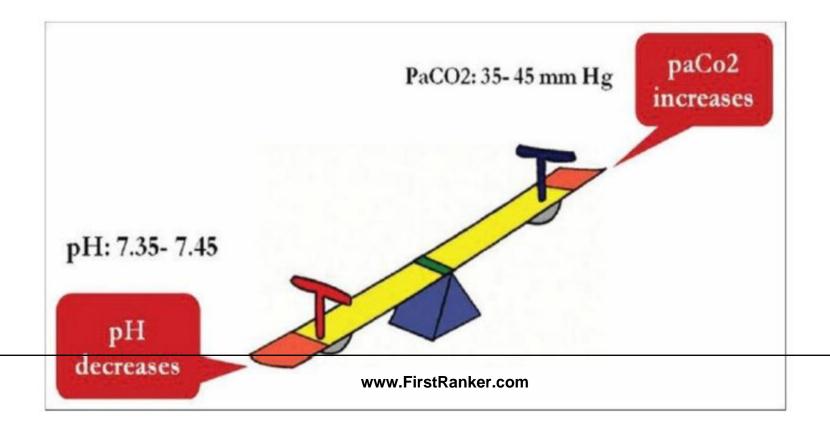
- Our body functions in a relatively narrow alkaline environment
 ➤ pH: 7.35-7.45
- Normal physiologic function = the maintenance of pH within this range.
- Two main mechanisms Respiratory and Metabolic.
- If pH <7.35, the blood is said to be <u>acidic</u>.
- If pH >7.45, the blood is said to be <u>alkalotic</u>.

The respiratory buffer response

- Carbon dioxide (CO2) is a normal by-product of cellular metabolism.
- Partial pressure of CO2 in arterial blood (paCO2) is determined by alveolar ventilation.
- The excess CO2 combines with water to form carbonic acid.
- The blood pH changes according to
 - > Amount of carbonic acid in the body i.e. the depth and rate of ventilation.
- As blood pH decreases (acidosis), CO2 is exhaled (alkalosis as compensation).
- As blood pH increases (alkalosis), CO2 is retained (acidosis as compensation).
- The respiratory response is <u>fast and activated within minutes.</u>

The renal buffer response

- The kidneys secrete Hydrogen ion (H+) and reabsorbs bicarbonate.
- In response to metabolic acid formation.
- Bicarbonate is a metabolic component and considered a base.
- As blood pH decreases (acidosis), the body retains bicarbonate (a base).
- As blood pH rises (alkalosis), the body excretes bicarbonate (a base) in urine.
- This compensation is slow and takes hours to days to get activated.



The acid-base control

- The pH is dependent on the paCO2 /HCO3- (bicarbonate) ratio.
- A change in CO2 compensated by a change in HCO3- and vice versa.
- The initial change is called the <u>primary disorder</u>.
- The secondary response is called the <u>compensatory disorder</u>.

Basic facts to remember

- CO2 is a respiratory component and considered a respiratory acid.
- Moves opposite to the direction of pH and is visualized as a see-saw

Basic facts to remember......

• Bicarbonate - A metabolic component and considered a base.

It moves in the <u>same direction</u> as pH and is visualized as <u>an</u>

<u>elevator</u>

Basic facts to remember......

- If CO2 and HCO3- move in the <u>same direction</u>, it is considered a <u>primary</u> <u>disorder</u>.
 - For example, if there is respiratory acidosis in body (CO2 retention), the bicarbonate levels increase as a compensation (metabolic alkalosis). The direction of both CO2 and HCO3- are the same in this case.
- If CO2 and HCO3- move in <u>opposite directions</u>, it is considered a <u>mixed disorder</u>.
 - For example, mixed disorder in the case of salicylate poisoning: Primary respiratory
 alkalosis due to salicylate-induced hyperventilation and a primary metabolic acidosis due
 to salicylate toxicity.

Conditions causing acid-base imbalance

- Respiratory acidosis
 - Any condition causing the accumulation of CO2 in the body.
 - Central nervous system (CNS) depression due to head injury
 - Sedation, coma
 - · Chest wall injury, flail chest
 - Respiratory obstruction/foreign body

- Respiratory alkalosis
 - Due to decrease in CO2.
 Hyperventilation occurs and CO2 is washed out causing alkalosis.
 - Psychological: Anxiety, fear
 - Pain
 - Fever, sepsis, pregnancy, severe anemia.

Conditions causing acid-base imbalance

- Metabolic acidosis -due to excess of acids or deficit of base.
 - Increased acids
 - Lactic acidosis (shock, haemorrhage, sepsis)
 - · Diabetic ketoacidosis
 - Renal failure
 - · Deficit of base
 - Severe diarrhoea
 - Intestinal fistulas.

- Metabolic alkalosis caused by excess base or deficit of acids.
 - Acid Deficit:
 - Prolonged vomiting, nasogastric suction, diuretics
 - Excess base:
 - Excess consumption of diuretics and antacids
 - massive blood transfusion (citrate metabolized to bicarbonate).

Arterial blood gas analysis

- Important routine investigation to monitor
 - > the acid-base balance of patients
 - > effectiveness of gas exchange
- A vital role in monitoring of
 - ➤ Postoperative patients,
 - > Patients receiving oxygen therapy,
 - > Those on intensive support,
 - ➤ Patients with significant blood loss, sepsis, and comorbid conditions like diabetes, kidney disorders,
 - > Cardiovascular system (CVS) conditions

Why do we order a blood gas analysis?

- > Aids in establishing diagnosis
- Guides treatment plan
- > Improvement in the management of acid/base; allows for optimal function of medications
- > Acid/base status may alter levels of electrolytes critical to the status of a patient.

· Limitations of blood gas analysis

- Can not yield a specific diagnosis. (e.g. A patient with asthma may have similar values to another patient with pneumonia).
- > Does not reflect the degree to which an abnormality actually affects a patient.
- > Cannot be used as a screening test for early pulmonary disease.

Arterial vs Venous blood gas analysis

www.FirstRanker.com

- Arterial blood

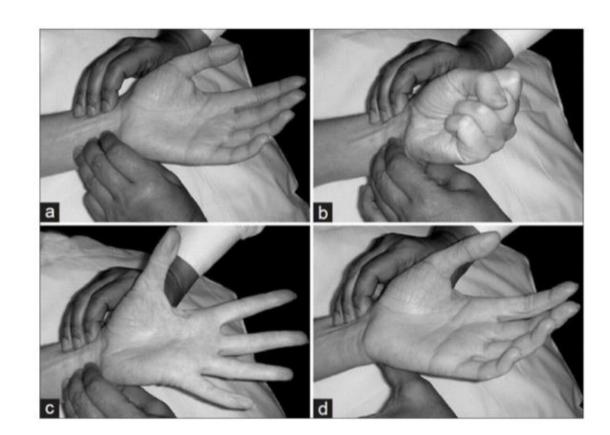
 paO2, paCO2, and pH measurements.
- Best indicator ———— How well the lungs are oxygenating.

H+	Hydrogen ions, inversely proportional to pH	35-45 mmol/L
pH	Acidity/alkalinity	7.35-7.45
paO,	Partial pressure of oxygen in arterial blood	80-100 mmHg
SaO,	Arterial oxygen saturation	95-100%
paCŌ,	Partial pressure of CO, in arterial blood	35-45 mm Hg
HCO3-	Bicarbonate in blood	22-26 mEq/L
BE	Base excess (amount of excess or	-2 to + 2
	insufficient amount of base in blood) -ve in acidosis, +ve in alkalosis	mmol/L

Arterial vs Venous blood gas analysis

- If the venous sample is obtained
 - ➤ Values compared and interpreted keeping in consideration.

Value	Arterial blood	Mixed venous
pН	7.40 (7.35-7.45)	7.36 (7.31-7.41)
paO ₂	80-100 mmHg	35-40 mmHg
O, saturation	95%	70-75%
PaCO,	35-45 mmHg	41-51 mmHg
HCO3-	22-26 mEqL-1	22-26 mEqL-1
BE	-2 to + 2	-2 to + 2


(Table adapted from^[3]); O₂: Oxygen, paO₂: Partial pressure of oxygen in arterial blood, pH: Acidity/alkalinity, PaCO₂: Partial pressure of oxygen in arterial blood, HCO³: Bicarbonate in blood, BE: Base excess

➤ Significance in hemodynamically unstable patients and should not be discarded.

Obtaining an arterial sample

- Order of preference:
 - ➤ Radial > brachial > femoral artery.
- Radial artery is preferred:
 - >ease of palpation and access
 - good collateral supply.
- Collateral supply to the hand:
 - ➤ Confirmed by the modified Allen's test

Modified Allen's test

- Ask the patient to make a tight fist.
- Apply pressure to the wrist:
 - ➤ Using the middle and index fingers of both hands
 - > Compress the radial and ulnar arteries at the same time
- While maintaining pressure:
 - > ask the patient to open the hand slowly.
 - > Lower the hand and release pressure on the ulnar artery only.
- Positive test:
 - ➤ The hand <u>flushes pink or returns to normal color</u> within 15 seconds
- **Negative test:**
 - > The hand does not flush pink or return to normal color within 15 seconds
 - > indicating a disruption of blood flow from the ulnar artery to the hand
 - radial artery should not be used. www.FirstRanker.com

www.FirstRanker.com

Sampling

- Arm of the patient
 - · palm up on a flat surface
 - wrist dorsiflexed at 45°.
- · Puncture site:
 - · cleaned with alcohol or iodine
 - allow the alcohol to dry before puncture, as the alcohol can cause arteriospasm
 - local anesthetic (such as 2% lignocaine)
- · Radial artery should be palpated for a pulse
- A preheparinised syringe with a 23/25 gauge needle should be inserted at an angle just distal to the palpated pulse.
- After the puncture, sterile gauze should be placed firmly over the site and direct pressure applied for several minutes to obtain hemostasis.

Errors

- Allow a steady state after initiation or change in oxygen therapy before obtaining a sample
 - a steady state is reached between 3 and 10 minutes.
 - in patients with chronic airway obstruction, it takes about 20-30 minutes.
- Always note the percentage of inspired air (FiO2) and condition of the patient
- Do not use excess heparin as
 - it causes sample dilution
 - Excess of heparin may affect the pH.
- Avoid air bubbles in syringe.
- Avoid delay in sample processing.
 - As blood is a living tissue, O2 is being consumed and CO2 is produced in the blood sample.
 - In case of delay, the sample should be placed in ice and such iced samples can be processed for up to two hours without affecting the blood gas values.
- Accidental venous sampling. The venous sample report should not be discarded and can provide sufficient information.

Steps of interpretation

- Step 1: Anticipate the disorder
 - keeping in mind the clinical settings and the condition of the patient
 - e.g., the patient may present with a history of insulin-dependent diabetes mellitus (IDDM),
 which may contribute to a metabolic acidosis
- Step 2: Check the pH.
 - pH < 7.35: Acidosis
 - pH > 7.45: Alkalosis
 - pH = 7.40: Normal/mixed disorder/fully compensated disorder
 - (Note: If mixed disorder, pH indicates stronger component)

Steps of interpretation.....

• Step 3: Check SaO2 /paO2

SaO2 is a more reliable indicator as it depicts the saturation of hemoglobin in arterial blood.

	SaO ₂ %	paO ₂
Mild hypoxemia	90-94	60-79 mmHg
Moderate hypoxemia	75-89	40-59 mmHg
Severe hypoxemia	< 75	< 40 mmHg
SaO ₂ : Arterial oxygen saturation		

Note: Always compare the SaO2 with FiO2

. the SaO2 could be within normal range but still much less than FiO2 if the patient is on supplemental oxygen (difference should be less than 10)

Steps of interpretation.....

Step 4: Check CO2 and HCO3 - (bicarbonate) levels-

➤ Identify the culprit

Increased CO₂ (>40 mmHg)

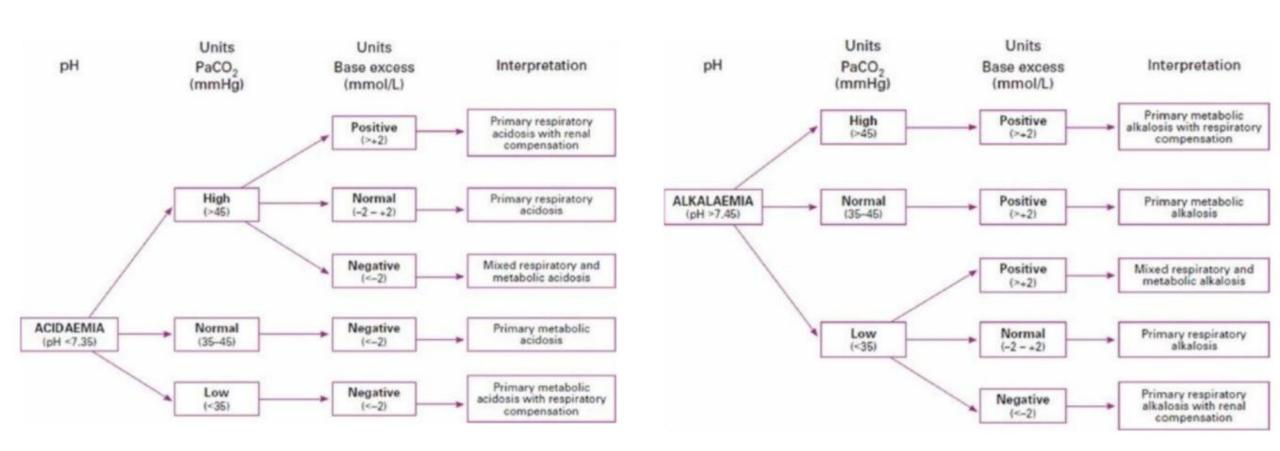
Decreased CO₂ (<40 mmHg)

Respiratory acidosis

Respiratory alkalosis

Metabolic alkalosis

Metabolic acidosis


➤ Is it a respiratory/metabolic/mixed disorder?

Steps of interpretation.....

- Step 5: Check base excess (BE).
 - Defined as amount of base required to return the pH to a normal range.
 - If it is positive, the metabolic picture is of alkalosis.
 - If it is negative, the metabolic picture is of acidosis.
- Either of bicarbonate ions/base excess can be used to interpret metabolic acidosis/alkalosis.

Interpretation of arterial blood gas report on the basis of using BE as a metabolic index

Steps of interpretation.....

- Step 6: Check for compensation.
- Is there a compensatory response with respect to the primary change?
 - · If yes: Compensated
 - if no: Uncompensated.
- In case of compensation, does it bring the pH to a normal range?
 - · If yes: Fully compensated
 - if no: Partially compensated.

Example: 1

- If pH is 7.21, HCO3- is 14, and CO2 is 40.
 - CO2 is normal
 - HCO3- is decreased

Example: 1

- If pH is 7.21, HCO3- is 14, and CO2 is 40.
 - CO2 is normal
 - HCO3- is decreased
- · A case of metabolic acidosis.
- Expected compensation would be a decrease in CO2 causing respiratory alkalosis.
- Now consider this table ----

pН	HCO3-	pCO ₂	Compensation
7.21	14	40	Uncompensated
7.21	14	30 ↓	Partially compensated
7.37	14	20 ↓↓	Fully compensated
		www.FirstRanker.com	

Example: 2

- pH: 7.55, paCO2: 49.0, HCO3: 48.2
 - pH: 7.55 alkalosis
 - paCO2: 49.0 increased
 - HCO3: 48.2 increased
- paCO2 is increased retention of CO2 causes acidosis
- HCO3 is increased increased base causes alkalosis
- So, the primary disorder is metabolic alkalosis.
- · CO2 is being retained to compensate for the same-
 - the pH has still not returned to a normal range.
- So, the interpretation <u>Partially Compensated Metabolic Alkalosis</u>

Example 3

- pH: 7.34, paCO2 40.3, HCO3: 20.4.
 - The pH is acidic
 - paCO2 is normal
 - Bicarbonate is decreased.
- Primary disorder is metabolic acidosis
- but no compensatory response as the paCO2 is normal.
- Interpretation Uncompensated Metabolic Acidosis

Example 4

- pH: 7.52, paCO2 : 31.0, HCO3 : 29.4
 - pH is alkalotic
 - paCO2 is decreased (alkalosis)
 - Bicarbonate is increased (alkalosis).
- As the directions of paCO2 and bicarbonate are opposite and both are causing alkalosis.
- The picture is suggestive of a mixed disorder.
- Interpretation Combined Alkalosis

MMM/FitsiRanker.com