

HOMEOSTASIS

Concepts of Homeostasis

• Claude Bernard:

- Stability of the "milieu intérieur" is the primary condition for freedom and independence of existence.
- i.e. body systems act to maintain internal constancy.

Walter Cannon:

- Term "Homeostasis".
- Coordinated physiological process which maintains most of the steady states of the organism.
- i.e. complex homeostatic responses involving the brain, nerves, heart, lungs, kidneys and spleen work to maintain body constancy.
- Responses to injury are beneficial to the host and allow healing/survival.

Concepts of Homeostasis......

- Classical homeostatic control system:
 - Signal detector
 - Processor
 - Effector
 - Negative feedback loop
- Open loop system:
 - Also referred to as non-feedback system
 - Type of continuous control system in which the output has no influence or effect on the control
 action of the input signal.
 - Only with medical/surgical resolution of the primary abnormality results in classical homeostasis.

Concepts of Homeostasis......

- Elective surgical practice:
 - Reduce the need for a homeostatic response by minimizing the primary insult
 - e.g. minimal access surgery and 'stress-free' perioperative care.
- Emergency surgery:
 - Presence of tissue trauma/ sepsis/ hypovolaemia often compounds the primary problem.
 - It requires:
 - To augment artificially homeostatic responses (e.g. resuscitation)
 - And to close the 'open' loop by intervening to resolve the primary insult (e.g. surgical treatment of major abdominal sepsis)
 - And provide organ support (critical care)
 - While the patient comes back to a situation in which homeostasis can achieve a return to normality.

Graded Nature of the Injury Response

- Response to injury:
 - More severe the injury- Greater the response.
 - Applies to Physiological/Metabolic/Immunological changes.
 - Following elective surgery of intermediate severity-
 - Changes may be a transient and modest.
 - Mild rise in temp./ heart rate/ respiratory rate/ energy expenditure and white cell count.
 - Following major trauma/sepsis-
 - Changes are accentuated.
 - Resulting in SIRS/ hyper metabolism/ marked catabolism/ shock and even multiple organ dysfunction (MODS).
 - Genetic variability plays a key role in determining the intensity of the inflammatory response.

Graded Nature of the Injury Response....

Response to injury:

Hypermetabolism and increased nitrogen excretion are closely related to the magnitude of the initial injury and show a gradedresponse.

Graded Nature of the Injury Response....

- Immunological sequelae of major injury:
 - Evolve from a **Pro-inflammatory State**
 - Driven primarily by the innate immune system (macrophages, neutrophils, dendritic cells).
 - Finally- <u>Compensatory Anti-Inflammatory Response Syndrome</u> (CARS)
 - Characterized by suppressed immunity- diminished resistance to infection.
 - Patients who develop infective complications-
 - CARS leads to ongoing systemic inflammation/ acute phase response and continued catabolism.

Mediators of the Metabolic Response to Injury

- 'Classical Neuroendocrine Pathways' of the stress response consist of:
 - Afferent nociceptive neurons
 - Spinal cord
 - Thalamus
 - Hypothalamus
 - and pituitary

Mediators of the Metabolic Response to Injury.....

- Corticotrophin- Releasing Factor (CRF)- released from the hypothalamus
 - Increases **ACTH** release- from the anterior pituitary.
 - ACTH acts on the adrenals-increase the secretion of cortisol.
- Hypothalamic activation of the Sympathetic Nervous System-
 - Release of Adrenaline and Glucagon.
- Intravenous infusion of a cocktail of these 'counter-regulatory' hormones (glucagon, glucocorticoids and catecholamine)-
 - Results in many aspects of the metabolic response.

Mediators of the Metabolic Response to Injury.....

- Other mediators:
 - Alterations in insulin release and sensitivity.
 - Hypersecretion of <u>prolactin</u> and <u>growth hormone (GH)</u> in the presence of low circulatory insulin-like growth factor-1 (IGF-1).
 - Inactivation of peripheral thyroid hormones and gonadal function.

Neuroendocrine response to injury/critical illness

- Neuroendocrine response to severe injury/critical illness is biphasic:
 - Acute phase:
 - Actively secreting pituitary and elevated counter-regulatory hormones (cortisol, glucagon, adrenaline).
 - Changes are thought to be beneficial for short term survival.
 - Chronic phase:
 - Hypothalamic suppression and low serum levels of the respective target organ hormones.
 - Changes contribute to chronic wasting.

Immunological changes to injury/critical illness

- <u>Innate immune system</u> (principally macrophages) interacts in a complex manner with the <u>adaptive immune system</u> (T cells, B cells):
 - Also affects the metabolic response to injury.
- Pro-inflammatory cytokines (IL-1/ TNF α / IL-6 and IL-8):
 - Produced within the first 24 hours of injury.
 - · Act directly on the Hypothalamus-
 - · Cause pyrexia.
 - · Augment the hypothalamic stress response.
 - Act directly on skeletal muscle- induce proteolysis.
 - Act on liver- Induce acute phase protein production.
 - A complex role in the development of peripheral insulin resistance.

Immunological changes to injury/critical illness.....

- Endogenous Cytokine Antagonists enter the circulation:
 - Within hours of the Upregulation of Pro-inflammatory Cytokines.
 - e.g. interleukin-1 receptor antagonist [IL-1Ra] and TNF-soluble receptors [TNF-sR-55 and 75].
 - Act to control the pro-inflammatory response.
 - A complex adaptive changes includes:
 - Development of a <u>Th2-type counter-inflammatory response</u>.
 - Regulated by IL-4, -5, -9 and -13 and transforming growth factor beta [TGFβ].
 - If accentuated and prolonged in critical illness- characterized as the CARS.
 - Results in immunosuppression- increased susceptibility to nosocomial infection.

Immunological changes to injury/critical illness.....

- Duration and magnitude of acute inflammation as well as the return to homeostasis are influenced by-
 - Specialized proresolving mediators (SPM)- include essential fatty acid-derived lipoxins, resolvins, protectins and maresins.
 - Uptake and clearance- of apoptotic polymorphonuclear neutrophils and microbial particles
 - Reduce- proinflammatory cytokines and lipid mediators
 - Enhance the removal of cellular debris.

Immunological changes to injury/critical illness.....

- Systemic inflammatory response syndrome following major injury:
 - Is driven initially by proinflammatory cytokines (e.g. IL-1, IL-6 and TNF α).
 - Is followed rapidly by increased plasma levels of cytokine antagonists and soluble receptors (e.g. IL-1Ra, TNF-sR).
 - If prolonged or excessive may evolve into a counterinflammatory response syndrome.

The 'Ebb and Flow' model of metabolic response

- Natural physiological response to injury includes:
 - Immobility/rest
 - Anorexia
 - Catabolism
- Sir David Cuthbertson divided the metabolic response to injury:
 - Into 'ebb' and 'flow' phases

Ebb phase

- Begins at the time of injury and lasts for approximately 24–48 hours.
- Characterized by-
 - hypovolemia/ decreased BMR/ reduced cardiac output/ hypothermia and lactic acidosis.
- Predominant hormones regulating the ebb phase- catecholamines/ cortisol/ aldosterone.
- Magnitude of response depends on:
 - Degree of blood loss.
 - Stimulation of somatic afferent nerves at the site of injury.
- Main physiological role of the ebb phase:
 - Conserve both circulating volume and energy stores for recovery and repair.

Flow phase

- Following resuscitation, ebb phase evolves into a hypermetabolic flow phase.
- This phase involves:
 - Mobilization of body energy stores- for recovery and repair
 - and subsequent replacement of lost or damaged tissue.
- Characterized by:
 - Tissue edema (from vasodilatation and increased capillary leakage)
 - Increased basal metabolic rate (hyper metabolism)/ Increased cardiac output
 - Raised body temperature/Leukocytosis
 - Increased oxygen consumption
 - And increased gluconeogenesis.

Flow phase......

Flow phase may be subdivided into:

- Catabolic phase
 - lasting approximately 3–10 days.
 - Increased production of counter-regulatory hormones (catecholamines, cortisol, insulin and glucagon) and inflammatory cytokines(e.g. IL-1, IL-6 and TNFα).
 - Significant fat and protein mobilization- significant weight loss and increased urinary nitrogen excretion.
 - Increased production of insulin- associated with significant insulin resistance and poor glycemic control.
 - Increased risk of complications- further aggravate the neuroendocrine and inflammatory stress responses and creates a vicious catabolic cycle.
- Anabolic phase
 - may last for weeks if extensive recovery and repair are required following serious injury.

Key Catabolic Elements of the Flow Phase

- During the response to injury, not all tissues are catabolic.
- Essence of coordinated response is-
 - Reprioritise limited resources away from peripheral tissues towards key viscera and wound.

Key Catabolic Elements of the Flow Phase

- Hypermetabolism:
 - Caused by an acceleration of energy-dependent metabolic cycles.
 - limited in modern practice on account of elements of routine critical care.
- Skeletal muscle wasting:
 - Provides amino acids for the metabolic support of central organs/tissues.
 - Mediated at a molecular level- by activation of the ubiquitin-proteasome pathway.
 - · Can result in-
 - Immobility
 - · Contribute to hypostatic pneumonia
 - If prolonged and excessive- leads to death

Key Catabolic Elements of the Flow Phase

- Hepatic acute phase response:
 - Represents a reprioritisation of body protein metabolism towards the liver and is characterised by:
 - Positive reactants (e.g. CRP): plasma concentration 个
 - Negative reactants (e.g. albumin): plasma concentration ↓
- Insulin resistance
 - Following surgery or trauma- hyperglycemia develops as a result of
 - Increased glucose production
 - Combined with decreased glucose uptake in peripheral tissues.
 - Decreased glucose uptake is a result of insulin resistance which is transiently induced.

CHANGES IN BODY COMPOSITION FOLLOWING INJURY

- Catabolism:
 - Decrease in fat mass and skeletal muscle mass
- Body weight may paradoxically increase
 - Expansion of extracellular fluid space

Avoidable factors that compound the response to injury

- Continuing haemorrhage
- Hypothermia
- Tissue oedema
- Tissue underperfusion
- Starvation
- Immobility