

Respiratory Physiology &Acute Respiratory Failure

Respiratory physiology is central to the practice of Anaesthesia

- The most commonly used anaestheticsthe inhalational agents- depend on the lungs for uptake and elimination.
- The most important side effects of both inhalational and intravenously administered anaesthetics are primarily respiratory.

FIGURE 23-1 A: Dichotomous division of the airways. (Reproduced, with permission, from Guyton AC: *Textbook of Medical Physiology*, 7th ed. W.B. Saunders, 1986.) **B**: The segmental

bronchi. (Reproduced, with permission, from Minnich DJ, Mathisen DJ: Anatomy of the trachea, carina, and bronchi. Thorac Surg Clin 2007 Nov;17(4):571-585.)

Functions of the Respiratory System

- Gas Exchange
 - O₂, CO₂
- Acid-base balance
 - $CO_2 + H_2O \leftarrow \rightarrow H_2CO_3 \leftarrow \rightarrow H^+ + HCO3^-$
- Phonation
- Pulmonary defense
- Pulmonary metabolism and handling of bioactive materials

Respiration

- The term respiration includes 3 separate functions:
 - Ventilation:
 - Breathing.
 - Gas exchange:
 - Between air and capillaries in the lungs.
 - Between systemic capillaries and tissues of the body.
 - 0₂ utilization:
 - Cellular respiration.

Ventilation

- Mechanical process that moves air in and out of the lungs.
- [O₂] of air is higher in the lungs than in the blood, O₂ diffuses from air to the blood.
- CO₂ moves from the blood to the air by diffusing down its concentration gradient.
- Gas exchange occurs entirely by diffusion:
 - Diffusion is rapid because of the large surface area and the small diffusion distance.

Respiratory Zone

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

- Region of gas exchange between air and blood.
- Includes
 respiratory
 bronchioles
 and alveolar
 sacs.
- Must contain alveoli.

FIGURE 23-2 The pulmonary interstitial space, with a capillary passing between the two alveoli. The capillary is incorporated into the thin (gas-exchanging) side of the alveolus on the right. The interstitial space is incorporated

into the thick side of the alveolus on the left. (Reproduced with permission, from Nunn JF: Nunn's Applied Physiology, 4th ed. Butterworth, 2000.)

Alveoli

- Polyhedral in shape and clustered like units of honeycomb.
- ~ 300 million air sacs (alveoli).
 - Large surface area (60–80 m²).
 - Each alveolus is 1 cell layer thick.
 - Total air barrier is 2 cells across (2 μm).
- 2 types of cells:
 - Alveolar type I:
 - Structural cells.
 - Alveolar type II:
 - Secrete surfactant.

Conducting Zone

- All the structures air passes through before reaching the respiratory zone.
- Warms and humidifies inspired air.
- Filters and cleans:
 - Mucus secreted to trap particles in the inspired air.
 - Mucus moved by cilia to be expectorated.

Tracheobronchial Tree:

- a) Trachea- conduit for ventilation
- Clearance of tracheal &bronchial secretions
- Begins at the lower border of the cricoid cartilage and extends to the level of the carina
- Average length of 10–13 cm
- The external diameters of the trachea is approximately 2.3 cm coronally and 1.8 cm sagitally in men and 2.0 cm & 1.4 cm, respectively, in women

- The trachea bifurcates at the carina into the right and left main stem bronchi
- Dichotomous division, starting with the trachea and ending in alveolar sacs, is estimated to involve 23 divisions.
- An estimated 300 million alveoli provide an enormous membrane (50–100 m²) for gas exchange in the average adult
- Gas exchange can occur only across the flat epithelium, which begins to appear on

Pulmonary Circulation & Lymphatics

- The lungs are supplied by two circulations, pulmonary and bronchial
- The bronchial circulation arises from It heart
- Along their courses, the bronchial vessels anastomose with the pulmonary arterial circulation and continue as far as the alveolar duct.
- The pulmonary circulation normally receives the total output of the right heart via the pulmonary artery, which divides into rt and lt branches to supply each lung

- Deoxygenated blood passes through the pulmonary capillaries, where O2 is taken up and CO2 is eliminated
- The oxygenated blood is then returned to the It heart by 4 main pulmonary veins (two from each lung)

Innervation

- The diaphragm is innervated by the phrenic nerves, which arise from the C3–C5 nerve roots.
- U/L phrenic nerve palsy only modestly reduces most indices of pulmonary function (~ 25%).
- B/L phrenic nerve palsies produce more severe impairment
- The vagus nerves provide sensory innervation to the tracheobronchial tree

Thoracic Cavity

- Diaphragm:
 - Sheets of striated muscle divides anterior body cavity into 2 parts.
- Above diaphragm: thoracic cavity:
 - Contains heart, large blood vessels, trachea, esophagu thymus, and lungs.
- Below diaphragm: abdominopelvic cavity:
 - Contains liver, pancreas, GI tract, spleen, and genitourinary tract.
- Intrapleural space:
 - Space between visceral and parietal pleurae.

Intrapulmonary and Intrapleural Pressures

- Visceral and parietal pleurae are flush against each other.
 - The intrapleural space contains only a film of fluid secreted by the membranes.
- Lungs normally remain in contact with the chest walls.
- Lungs expand and contract along with the thoracic cavity.
- Intrapulmonary pressure:
 - Intra-alveolar pressure (pressure in the alveoli).
- Intrapleural pressure:
 - Pressure in the intrapleural space.
 - Pressure is negative, due to lack of air in the intrapleural space.

Transpulmonary Pressure

- Pressure difference across the wall of the lung.
- Intrapulmonary pressure intrapleural pressure.
 - Keeps the lungs against the chest wall.

Intrapulmonary and Intrapleural Pressures (continued)

- During inspiration:
 - Atmospheric pressure is > intrapulmonary pressure (-3 mm Hg).
- During expiration:
 - Intrapulmonary pressure (+3 mm Hg) is > atmospheric pressure.

Boyle's Law

- Changes in intrapulmonary pressure occur as a result of changes in lung volume.
 - Pressure of gas is inversely proportional to its volume.
- Increase in lung volume decreases intrapulmonary pressure.
 - Air goes in.
- Decrease in lung volume, raises intrapulmonary pressure above atmosphere.
 - Air goes out.

Physical Properties of the Lungs

- Ventilation occurs as a result of pressure differences induced by changes in lung volume.
- Physical properties that affect lung function:
 - Compliance.
 - Elasticity.
 - Surface tension.

Compliance

- Distensibility (stretchability):
 - Ease with which the lungs can expand.
- Change in lung volume per change in transpulmonary pressure.

$\Delta V/\Delta P$

- 100 x more distensible than a balloon.
 - Compliance is reduced by factors that produce resistance to distension.

FirstRanker.com

Elasticity

- Tendency to return to initial size after distension.
- High content of elastin proteins.
 - Very elastic and resist distension.
 - Recoil ability.
- Elastic tension increases during inspiration and is reduced by recoil during expiration.

Surface Tension

- Force exerted by fluid in alveoli to resist distension.
 - Lungs secrete and absorb fluid, leaving a very thin film of fluid.
 - This film of fluid causes surface tension.
 - Fluid absorption is driven (osmosis) by Na⁺ active transport.
 - Fluid secretion is driven by the active transport of Clof the alveolar epithelial cells.
- H₂0 molecules at the surface are attracted to other H₂0 molecules by attractive forces.
 - Force is directed inward, raising pressure in alveoli.

Surfactant

- Phospholipid produced by alveolar type II cells.
- Lowers surface tension.
 - Reduces attractive forces of hydrogen bonding by becoming interspersed between H₂0 molecules.
 - Surface tension in alveoli is reduced.
- As alveoli radius decreases, surfactant's ability to lower surface tension increases.
- Disorders:
 - RDS.
 - ARDS.

Quiet Inspiration

- Active process:
 - Contraction of diaphragm, increases thoracic volume vertically.
- Parasternal and external intercostals contract, raising the ribs; increasing thoracic volume laterally.
- Pressure changes:
 - Alveolar changes from 0 to −3 mm Hg.
 - Intrapleural changes from –4 to –6 mm Hg.
 - Transpulmonary pressure = +3 mm Hg.

Expiration

- Quiet expiration is a passive process.
 - After being stretched by contractions of the diaphragm and thoracic muscles; the diaphragm, thoracic muscles, thorax, and lungs recoil.

 Decrease in lung volume raises the pressure within alveoli above atmosphere, and pushes air out.

 ressure changes:
 - Decrease in lung volume raises the pressure within alveoli
- Pressure changes:
 - Intrapulmonary pressure changes from -3 to +3 mm Hg.
 - Intrapleural pressure changes from -6 to -3 mm Hg.
 - Transpulmonary pressure = +6 mm Hg.

Pulmonary Ventilation

Lung volumes and capacities

4 lung volumes:

tidal (~500 ml)
inspiratory reserve (~3100 ml)
expiratory reserve (~1200 ml)
residual (~1200 ml)

4 lung capacities

inspiratory (~3600 ml) functional residual (~2400 ml) vital (~4800 ml) total lung (~6000 ml)

Terms Used to Describe Lung Volumes and Capacities

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Table 16.3 Terms Used to Describe Lung Volumes and Capacities

Term	Definition
Lung Volumes	The four nonoverlapping components of the total lung capacity
Tidal volume	The volume of gas inspired or expired in an unforced respiratory cycle
Inspiratory reserve volume	The maximum volume of gas that can be inspired during forced breathing in addition to tidal volume
Expiratory reserve volume	The maximum volume of gas that can be expired during forced breathing in addition to tidal volume
Residual volume	The volume of gas remaining in the lungs after a maximum expiration
Lung Capacities	Measurements that are the sum of two or more lung volumes
Total lung capacity	The total amount of gas in the lungs after a maximum inspiration
Vital capacity	The maximum amount of gas that can be expired after a maximum inspiration
Inspiratory capacity	The maximum amount of gas that can be inspired after a normal tidal expiration
Functional residual capacity	The amount of gas remaining in the lungs after a normal tidal expiration

Anatomical Dead Space

- Not all of the inspired air reached the alveoli.
- As fresh air is inhaled it is mixed with air in anatomical dead space.
 - Conducting zone and alveoli where [0₂] is lower than normal and [C0₂] is higher than normal.
 Alveolar ventilation = F x (TV- DS).
 F = frequency (breaths/min.).
 TV = tidal volume.
- Alveolar ventilation = F x (TV- DS).

 - TV = tidal volume.
 - DS = dead space.

Restrictive and Obstructive Disorders

- Restrictive disorder:
 - Vital capacity is reduced.
 - FVC is normal.
- Obstructive disorder:
 - Diagnosed by tests that measure the rate of expiration.
 - VC is normal.
 - FEV_1 is < 80%.

Gas Exchange in the Lungs

- Dalton's Law:
 - Total pressure of a gas mixture is = to the sum of the pressures that each gas in the mixture would exert independently.
- Partial pressure:
 - The pressure that an particular gas exerts independently.
- $P_{ATM} = P_{N_2} + P_{O_2} + P_{CO_2} + P_{H_2O} = 760 \text{ mm Hg.}$
 - 0_2 is humidified = 105 mm Hg.
 - H₂0 contributes to partial pressure (47 mm Hg).
 - P_{0_2} (sea level) = 150 mm Hg.
 - $P_{C0_2} = 40 \text{ mm Hg.}$

Partial Pressures of Gases in Inspired Air and Alveolar Air

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Partial Pressures of Gases in Blood

- When a liquid or gas (blood and alveolar air) are at equilibrium:
 - The amount of gas dissolved in fluid reaches a maximum value (Henry's Law).
- Depends upon:
 - Solubility of gas in the fluid.
 - Temperature of the fluid.
 - Partial pressure of the gas.
- [Gas] dissolved in a fluid depends directly on its partial pressure in the gas mixture.

Significance of Blood Po₂ and Pco₂ Measurements

- At normal Po₂
 arterial blood
 is about 100
 mm Hg.
- P_{0₂} level in the systemic veins is about 40 mm Hg.

- Pco₂ is 46 mm Hg in the systemic veins.
- Provides a good index of lung function.

Pulmonary Circulation

- Rate of blood flow through the pulmonary circulation is = flow rate through the systemic circulation.
 - Driving pressure is about 10 mm Hg.
- Pulmonary vascular resistance is low.
 - Low pressure pathway produces less net filtration than produced in the systemic capillaries.
 - Avoids pulmonary edema.
- Autoregulation:
 - Pulmonary arterioles constrict when alveolar Po₂ decreases.
 - Matches ventilation/perfusion ratio.

Pulmonary Circulation (continued)

- In a fetus:
 - Pulmonary circulation has a higher vascular resistance, because the lungs are partially collapsed.
- After birth, vascular resistance decreases:
 - Opening the vessels as a result of subatmospheric intrapulmonary pressure.
 - Physical stretching of the lungs.
 - Dilation of pulmonary arterioles in response to increased alveolar Po₃.

Lung Ventilation/Perfusion Ratios

- Alveoli at apex are underperfused (overventilated).
- Alveoli at the base are underventilated (overperfused).

Brain Stem Respiratory Centers

- Neurons in the reticular formation of the medulla oblongata form the rhythmicity center:
 - Controls automatic breathing.
 - Consists of interacting neurons that fire either during inspiration (I neurons) or expiration (E neurons).

Brain Stem Respiratory Centers (continued)

- I neurons project to, and stimulate spinal motor neurons that innervate respiratory muscles.
- Expiration is a passive process that occurs when the I neurons are inhibited.
- Activity varies in a reciprocal way.

Rhythmicity Center

- I neurons located primarily in dorsal respiratory group (DRG):
 - Regulate activity of phrenic nerve.
 - Project to and stimulate spinal interneurons that innervate respiratory muscles.
- E neurons located in ventral respiratory group (VRG):
 - Passive process.
 - Controls motor neurons to the internal intercostal muscles.
- Activity of E neurons inhibit I neurons.
 - Rhythmicity of I and E neurons may be due to pacemaker neurons.

Pons Respiratory Centers

- Activities of medullary rhythmicity center is influenced by pons.
- Apneustic center:
 - Promotes inspiration by stimulating the I neurons in the medulla.
- Pneumotaxic center:
 - Antagonizes the apneustic center.
 - Inhibits inspiration.

Chemoreceptors

- 2 groups of chemoreceptors that monitor changes in blood Pco₂, Po₂, and pH.
- Central:
 - Medulla.
- Peripheral:
 - Carotid and aortic bodies.
 - Control breathing indirectly via sensory nerve fibers to the medulla (X, IX).

Effects of Blood Pco₂ and pH on Ventilation

- Chemoreceptor input modifies the rate and depth of breathing.
 - Oxygen content of blood decreases more slowly because of the large "reservoir" of oxygen attached to hemoglobin.
 - Chemoreceptors are more sensitive to changes in P_{C0_2} . $H_2O + CO_2 \longleftrightarrow H_2CO_3 \longleftrightarrow H^+ + HCO_3^-$
- Rate and depth of ventilation adjusted to maintain arterial Pco, of 40 mm Hg.

Chemoreceptor Control

- Central chemoreceptors:
 - More sensitive to changes in arterial PCO₂.

$$H_2O + CO_2 \longrightarrow H_2CO_3 \longrightarrow H^+$$

- H⁺ cannot cross the blood brain barrier.
- CO₂ can cross the blood brain barrier and will form H₂CO₃.
 - Lowers pH of CSF.
 - Directly stimulates central chemoreceptors.

Chemoreceptor Control of Breathing

Effects of Blood Po, on Ventilation

- Blood PO₂ affected by breathing indirectly.
 - Influences chemoreceptor sensitivity to changes in PCO₂.
- Hypoxic drive:
 - Emphysema blunts the chemoreceptor response to PCO₂.
 - Choroid plexus secrete more HCO₃ into CSF, buffering the fall in CSF pH.
 - Abnormally high PCO₂ enhances sensitivity of carotid bodies to fall in PO₂.

Effects of Pulmonary Receptors on Ventilation

- Lungs contain receptors that influence the brain stem respiratory control centers via sensory fibers in vagus.
 - Unmyelinated C fibers can be stimulated by:
 - · Capsaicin:
 - Produces apnea followed by rapid, shallow breathing.
 - Histamine and bradykinin:
 - Released in response to noxious agents.
 - Irritant receptors are rapidly adaptive receptors.
- Hering-Breuer reflex:
 - Pulmonary stretch receptors activated during inspiration.
 - · Inhibits respiratory centers to prevent undue tension on lungs.

Hemoglobin and 0₂ Transport

- 280 million hemoglobin/RBC.
- Each hemoglobin has 4 polypeptide chains and 4 hemes.
- In the center of each heme group is 1 atom of iron that can combine with 1 molecule 0₂.

Hemoglobin

- Oxyhemoglobin:
 - Normal heme contains iron in the reduced form (Fe²⁺).
 - Fe²⁺ shares electrons and bonds with oxygen.
- Deoxyhemoglobin:
 - When oxyhemoglobin dissociates to release oxygen, the heme iron is still in the reduced form.
 - Hemoglobin does not lose an electron when it combines with 0_2 .

Hemoglobin (continued)

- Methemoglobin:
 - Has iron in the oxidized form (Fe³⁺).
 - Lacks electrons and cannot bind with 0₂.
 - Blood normally contains a small amount.
- Carboxyhemoglobin:
 - The reduced heme is combined with carbon monoxide.
 - The bond with carbon monoxide is **210** times stronger than the bond with oxygen.
 - Transport of 0_2 to tissues is impaired.

Hemoglobin (continued)

- Oxygen-carrying capacity of blood determined by its [hemoglobin].
 - Anemia:
 - [Hemoglobin] below normal.
 - Polycythemia:
 - [Hemoglobin] above normal.
 - Hemoglobin production controlled by erythropoietin.
 - Production stimulated by Pco₂ delivery to kidneys.
- Loading/unloading depends:
 - P0₂ of environment.
 - Affinity between hemoglobin and 0₂.

Oxyhemoglobin Dissociation Curve

Effects of pH and Temperature

- The loading and unloading of O₂ influenced by the affinity of hemoglobin for O₂.
- Affinity is decreased when pH is decreased.
- Increased temperature and 2,3-DPG:
 - Shift the curve to the right.

Effect of 2,3 DPG on 0₂ Transport

- Anemia:
 - RBCs total blood [hemoglobin] falls, each RBC produces greater amount of 2,3 DPG.
 - Since RBCs lack both nuclei and mitochondria, produce ATP through anaerobic metabolism.
- Fetal hemoglobin (hemoglobin f):
 - Has 2 γ -chains in place of the β -chains.
 - Hemoglobin f cannot bind to 2,3 DPG.
 - Has a higher affinity for 0₂.

CO₂ Transport

- CO₂ transported in the blood:
 - HCO₃- (70%).
 - Dissolved CO₂ (10%).
 - Carbaminohemoglobin (20%).

$$H_2O + CO_2 \stackrel{\text{Ca}}{\longleftrightarrow} H_2CO_3$$
High Pco₂

Chloride Shift at Systemic Capillaries

- $H_2O + CO_2 \longleftrightarrow H_2CO_3 \longleftrightarrow H^+ + HCO_3^-$
- At the tissues, CO₂ diffuses into the RBC; shifts the reaction to the right.
 - Increased [HCO₃-] produced in RBC:
 - HCO₃ diffuses into the blood.
 - RBC becomes more +.
 - Cl⁻ attracted in (Cl⁻ shift).
 - H⁺ released buffered by combining with deoxyhemoglobin.
- HbC0₂ formed.
 - Unloading of 0₂.

Carbon Dioxide Transport and Chloride Shift

At Pulmonary Capillaries

- $H_2O + CO_2 \longleftrightarrow H_2CO_3 \longleftrightarrow H^+ + HCO_3^-$
- At the alveoli, CO₂ diffuses into the alveoli; reaction shifts to the left.
- Decreased [HCO₃⁻] in RBC, HCO₃⁻ diffuses into the RBC.
 - RBC becomes more -.
 - Cl⁻ diffuses out (reverse Cl⁻ shift).
- Deoxyhemoglobin converted to oxyhemoglobin.
 - Has weak affinity for H⁺.
- Gives off HbC0₂.

Reverse Chloride Shift in Lungs

FirstRanker.com

Respiratory Acidosis

- Hypoventilation.
- Accumulation of CO₂ in the tissues.
 - PCO₂ increases.
 - pH decreases.
 - Plasma HCO₃⁻ increases.

Respiratory Alkalosis

- Hyperventilation.
- Excessive loss of CO₂.
 - PCO₂ decreases.
 - pH increases.
 - Plasma HCO₃- decreases.

Ventilation During Exercise

- During exercise, breathing becomes deeper and more rapid.
- Produce > total minute volume.
- Neurogenic mechanism:
 - Sensory nerve activity from exercising muscles stimulates the respiratory muscles.
 - Cerebral cortex input may stimulate brain stem centers.
- Humoral mechanism:
 - Pco, and pH may be different at chemoreceptors.
 - Cyclic variations in the values that cannot be detected by blood samples.

Acute Respiratory Failure

- Results from inadequate gas exchange
 - Insufficient O₂ transferred to the blood
 - Hypoxemia
 - Inadequate CO₂ removal
 - Hypercapnia

Classification of RF

- Type 1
- Hypoxemic RF
- PaO2 < 60 mmHg with normal or ↓ PaCO2
- Associated with acute diseases of the lung
- □Pulmonary edema
 (Cardiogenic,
 noncardiogenic (ARDS),
 pneumonia, pulmonary
 hemorrhage, and collapse

- Type 2
- Hypercapnic RF
- PaCO2 > 50 mmHg
- Hypoxemia is common
- Drug overdose, neuromuscular disease, chest wall deformity, COPD, and Bronchial asthma

Pathophysiologic causes of Acute RF

Classification of Respiratory Failure

Mechanisms of hypoxemia

- Alveolar hypoventilation
- V/Q mismatch
- Shunt
- Diffusion limitation

Alveolar Hypoventilation

- Restrictive lung disease
- CNS disease
- Chest wall dysfunction
- Neuromuscular disease

Perfusion without ventilation (shunting)

Intra-pulmonary

- Small airways occluded (e.g asthma, chronic bronchitis)
- Alveoli are filled with fluid (e.g pulm edema, pneumonia)
- Alveolar collapse (e.g atelectasis)

Dead space ventilation

- DSV increase:
- Alveolar-capillary interface destroyed e.g emphysema
- Blood flow is reduced e.g CHF, PE
- Overdistended alveoli e.g positivepressure ventilation

Diffusion limitation

- > Severe emphysema
- > Recurrent pulmonary emboli
- Pulmonary fibrosis
- > Hypoxemia present during exercise

Diffusion Limitation

Hypercarbia

- Hypercarbia is always a reflection of inadequate ventilation
- PaCO2 is
 - directly related to CO2 production
 - Inversely related to alveolar ventilation

$$PaCO2 = \underbrace{k \times VCO2}_{VA}$$

Hypercarbia

- When CO2 production increases, ventilation increases rapidly to maintain normal PaCO2
- Alveolar ventilation is only a fraction of total ventilation

$$VA = VE - VD$$

- Increased deadspace or low V/Q areas may adversely effect CO2 removal
- Normal response is to increase total ventilation to maintain appropriate alveolar ventilation

Hypercapnic Respiratory Failure

• Imbalance between ventilatory supply and demand

Etiology and Pathophysiology

- Airways and alveoli
 - Asthma
 - Emphysema
 - Chronic bronchitis
 - Cystic fibrosisS

Etiology and Pathophysiology

- Central nervous system
 - Drug overdose
 - Brainstem infarction
 - Spinal chord injuries

Etiology and Pathophysiology

- Chest wall
 - Flail chest
 - Fractures
 - Mechanical restriction
 - Muscle spasm

Etiology and Pathophysiology

- Neuromuscular conditions
 - Muscular dystrophy
 - Multiple sclerosis

Diagnosis of RF

1 – Clinical (symptoms, signs)

- Hypoxemia
- Dyspnea, Cyanosis
- Confusion, somnolence, fits
- Tachycardia, arrhythmia
- Tachypnea (good sign)
- Use of accessory ms
- Nasal flaring
- Recession of intercostal ms
- Polycythemia
- Pulmonary HTN, Corpulmonale, Rt. HF

- Hypercapnia
- †Cerebral blood flow, and CSF Pressure
- Headache
- Asterixis
- Papilloedema
- Warm extremities, collapsing pulse
- Acidosis (respiratory, and metabolic)
- ↓pH, ↑ lactic acid

Respiratory Failure Symptoms

- CNS:
- Headache
- Visual Disturbances
- Anxiety
- Confusion
- Memory Loss
- Weakness
- Decreased Functional Performance

Respiratory Failure Symptoms

Cardiac:

Orthopnea

Peripheral edema

Chest pain

Other:

Fever, Abdominal pain, Anemia, Bleeding

Clinical

- Respiratory compensation
- Sympathetic stimulation
- Tissue hypoxia
- Haemoglobin desaturation

Clinical

- Respiratory compensation
 - Tachypnoea RR > 35 Breath /min
 - Accessory muscles
 - Recesssion
 - Nasal flaring
- Sympathetic stimulation
- Tissue hypoxia
- Haemoglobin desaturation

Clinical

- Respiratory compensation
- Sympathetic stimulation
 - ↑HR
 - ↑BP
 - Sweating

Tissue hypoxia

- Altered mental state
- \downarrow HR and \downarrow BP (late)
- Haemoglobin desaturation

cyanosis

Respirator Laborator

www.FirstRanker.com

Arterial blood gas

PaO2

PaCO₂

PH

Chest imaging

Chest x-ray

CT sacn

Ultrasound

Ventilation-perfusion scan

- ICU admission
- 1 -Airway management
 - Endotracheal intubation:
 - Indications
 - Severe Hypoxemia
 - Altered mental status
 - Importance
 - precise O2 delivery to the lungs
 - remove secretion
 - ensures adequate ventilation

- Correction of hypoxemia
 - O2 administration via nasal prongs, face mask, intubation and Mechanical ventilation
 - Goal: Adequate O2 delivery to tissues
 - PaO2 = > 60 mmHg
 - Arterial O2 saturation >90%

Indications for intubation and mechanical ventilation

- Innability to protect the airway
- Respiratory acidosis (pH<7.2)
- Refractory hypoxemia
- Fatigue/increased metabolic demands
 - impending respiratory arre
- Pulmonary toilet

- Mechanical ventilation
 - Increase PaO2
 - Lower PaCO2
 - Rest respiratory ms (respiratory ms fatigue)
 - Ventilator
 - Assists or controls the patient breathing
 - The lowest FIO2 that produces SaO2 >90% and PO2 >60 mmHg should be given to avoid O2 toxicity

- PEEP (positive End-Expiratory pressure
- Used with mechanical ventilation
 - Increase intrathoracic pressure
 - Keeps the alveoli open
 - Decrease shunting
 - Improve gas exchange
- Hypoxemic RF (type 1)
 - ARDS
 - Pneumonias

- Noninvasive Ventilatory support (IPPV)
- Mild to moderate RF
- Patient should have
 - Intact airway,
 - Alert, normal airway protective reflexes
- Nasal or full face mask
 - Improve oxygenation,
 - Reduce work of breathing
 - Increase cardiac output
- AECOPD, asthma, CHE com

- Treatment of the underlying causes
- After correction of hypoxemia, hemodynamic stability
- Antibiotics
 - Pneumonia
 - Infection
- Bronchodilators (COPD, BA)
 - Salbutamol
 - reduce bronchospasm
 - airway resistance

- Treatment of the underlying causes
- Physiotherapy
 - Chest percussion to loosen secretion
 - Suction of airways
 - Help to drain secretion
 - Maintain alveolar inflation
 - Prevent atelectasis, help lung expansion

- Weaning from mechanical ventilation
 - Stable underlying respiratory status
 - Adequate oxygenation
 - Intact respiratory drive
 - Stable cardiovascular status
 - Patient is a wake, has good nutrition, able to cough and breath deeply

www.FirstRanker.com