The Antiglobulin Test Hemolytic disease of newborn

Objectives

- Understand types of Coomb's test
 - Indications, Steps and interpretation
- Hemolytic Disease of the Newborn
 - State the testing to be performed on the mother to monitor the severity of HDN.
 - List the laboratory tests and values
 - State the treatment options
 - State the requirements of blood to be used for transfusion of the fetus and newborn.

Antigen antibody reactions

Figure 1 – Representation of the hemagglutination reaction. Blood group antigens and antibodies form a clumping of erythrocytes (modified from Parslow et al., 2004)(5)

ANTIGLOBULIN TEST

- Detection of antibodies- (IgG or complement) affixed to RBCs or free in plasma
 - <u>in vivo-</u>Direct antiglobulin test (DAT)
 - <u>in vitro</u> Indirect antiglobulin test (IAT)

Types of Coomb's Test

DAT- Direct antiglobulin test

IAT- Indirect antiglobulin test

ANTIGLOBULIN TEST

 Principle - Antihuman globulins (AHG) bind to human globulins either free in serum or attached to RBCs

ANTIGLOBULIN TEST

- Pentameric IgM Abs are so large that, when bound to RBC Ags, the RBCs agglutinate (usually at RT)
- IgG Abs usually need a little help, a bridge molecule, to agglutinate RBCs
- AHG acts as a bridge molecule

Agglutination

The Antiglobulin Test

 Antiglobulin serum (Coombs'Serum) was discovered by Coombs et al in 1945.

Anti-Human Globulin (AHG) Reagent

Preparation

- Anti-human globulin reagent is produced by immunizing rabbits, goats or sheep with human serum or purified type antigen.
- Animals are bled after a specified period and the reagent is purified by absorbing unwanted antibodies

Types of AHG reagent

- Polyspecific antiglobulin reagent human IgG, C3 and C4
- Monospecific antiglobulin reagent
 - Any one- human IgM, IgD, IgA,C3 or C4

DIRECT ANTIGLOBULIN TEST (DAT)

Cells coated in vivo

Washed to remove unbound globulins

Addition of anti-human globulin (AHG) promotes agglutination after centrifugation

www.FirstRanker.com

DAT

- detects sensitized red cells with IgG and/or complement components C3b and C3d in vivo.
- In vivo coating may occur when any immune mechanism is attacking the patient's own RBC's.
 - Autoimmunity
 - Alloimmunity
 - Drug-induced immune-mediated mechanism.

Examples of alloimmune hemolysis

- Hemolytic transfusion reaction
- Hemolytic disease of the newborn (also known as HDN or erythroblastosis fetalis)
 - Rhesus D
 - ABO
 - Anti-Kell
 - Rhesus c, E
 - Other -RhC, Rhe, Kidd, Duffy, MN, P or others

Examples of autoimmune hemolysis

- Warm antibody autoimmune hemolytic anemia
- Idiopathic
- Systemic lupus erythematosus
- Cold antibody autoimmune hemolytic anemia
- Infectious mononucleosis
- Paroxysmal cold hemoglobinuria (rare)

Drug-induced immune-mediated hemolysis

- Methyldopa
- Penicillin
- Quinidine
- Cephalosporins

Blood Sample

- Blood Sample
 - fresh
 - EDTA vial

Procedure of DAT

Add Check (IgG coated) cells to a negative test. If agglutination is obtained, the result is valid.

Indirect Antihuman globulin Test (IAT)

- **Indications-** to determine the presence of free antibodies in serum.
 - in vitro sensitization of red cells with IgG and/or complement
 - 1. Compatibility testing.
 - 2. Unexpected antibodies in serum.

Indirect antiglobulin test

Serum with specific antibody mixed with reagent red cells

Washed x3 after incubation to remove unbound globulins

Anti-human globulin (AHG) added to promote agglutination on centrifugation

www.FirstRanker.com

Blood Sample

- Blood Sample
 - fresh
 - Plain vial

Procedure:

Antigen-Antibody Ratio

- Prozone antibody excess: Antibodies saturating all antigen sites; no antibodies forming cross-linkages between cells; no agglutination
- Zone of equivalence: antibodies and antigens present in optimum ratio, agglutination formed
- Zone of antigen excess (Post-zone): too many antigens - any agglutination is hidden by masses of unagglutinated antigens

COOMB'S CELLS

- Antibody-coated cells are used as a positive indicator
 - To show that test cells were properly washed
 - No reagent deterioration has occurred
- Failure to agglutinate-test result is not valid

Hemolytic Disease of the Newborn

Cause of Hemolytic Disease

Cause of Hemolytic Disease

www.FirstRanker.com

Antigen of paternal origin present on the fetal red blood cells

> Decreased red blood cell survival which can result in anemia

Maternal IgG antibodies cross the placenta to coat fetal antigens

FIGURE 16-14 Development of erythroblastosis fetalis (hemolytic

fetus (left), and effect of treatment with anti-Rh antibody, or Rhogam

disease of the newborn) caused when an Rh mother carries an Rh

(right).

Three Classifications of HDN

- Rh anti-D
- ABO
- "Other" –anti-C, c, E, e, Jk, K, Fy, S etc.

Rh Hemolytic Disease

- Anti-D is the commonest form of severe HDN
- mild to severe.

ABO Hemolytic Disease

- Mother group O-anti-A, -B and -A,B in their plasma
- Fetal group A or B- RBCs attacked by antibodies
- Occurs in only 3%, is severe in only 1%

"Other" Hemolytic Disease

- Uncommon, occurs in ~0.8% of pregnant women.
- Anti-K
 - mild to severe
 - usually caused by multiple blood transfusions
 - is the second most common form of severe HDN

Complications During Pregnancy

Severe anemia

- Hydrops Fetalis
 - Baby's organs are unable to handle the anemia
 - The heart begins to fail
 - Fluid build up in the baby's tissues and organs
- A fetus with hydrops is at great risk of being stillborn.

Postnatal problems

- Asphyxia
- Pulmonary hypertension
- Pallor (due to anemia)
- Edema (hydrops, due to low serum albumin)
- Respiratory distress
- Coagulopathies (↓ platelets & clotting factors)
- Jaundice
- Kernicterus (from hyperbilirubinemia)
- Hypoglycemia (due to hyperinsulinemnia from islet cell hyperplasia)

Kernicterus (bilirubin encephalopathy)

- High levels of indirect bilirubin (>20 mg/dL)
 - crosses the blood-brain barrierunbound unconjugated bilirubin
 - penetrates neuronal and glial membranes- lipid soluble
 - toxic to nerve cells
- Patients who survive kernicterus have severe permanent neurologic symptoms
 - Choreoathetosis, spasticity, muscular rigidity, ataxia, deafness, mental retardation).

Laboratory Findings

- Anemia
- Hyperbilirubinemia
- Reticulocytosis (6 to 40%)
- Thrombocytopenia
- Leukopenia
- Positive Direct Antiglobulin Test
- Hypoalbuminemia
- Rh negative blood type or ABO incompatibility
- Smear: polychromasia, anisocytosis, no spherocytes

MCA Doppler study

- Reliable non-invasive screening tool to detect fetal anemia.
 - The vessel can be easily visualized with color flow Doppler as early as 18 weeks' gestation.
 - In cases of fetal anemia, an increase in the fetal cardiac output and a decrease in blood viscosity contribute to an increased blood flow velocity

Blood Bank Testing

Management

- Measure bilirubin in cord blood and at least every 4 hours for the first 12 to 24 hours
- Transcutaneous Monitoring

Intrauterine Transfusion (IUT)

- To prevent hydrops fetalis and fetal death.
- Transfusions done every 1 to 4 weeks until the fetus is mature enough to be delivered safely.
- A compatible blood type (usually type O, Rh-negative) is delivered into the fetus's abdominal cavity or into an umbilical cord blood vessel.

Selection of Blood

- CPD, as fresh as possible, preferably <5 days old.
- A hematocrit of 80% or greater is desirable to minimize the chance of volume overload in the fetus.
- The volume transfused- 75-175 mL depending on the fetal size and age.
- CMV negative
- IRRADIATED
- O negative, lack all antigens to which mom has antibodies and Coomb's compatible.

Treatment of Mild HDN

Phototherapy is the treatment of choice.

Exchange Transfusion

- If the total serum bilirubin level is approaching 20 mg/dL
- Continues to rise despite intense in-hospital phototherapy.
- Removes
 - sensitized cells
 - Reduces level of maternal antibody.
 - Removes about 60 percent of bilirubin from the plasma
- Correct anemia
- Restores albumin and coagulation factors