

Irradiation of Blood and Blood Components

Contents

- Why to Irradiate blood
- Transfusion Associated Graft versus Host Disease (TAGVHD)
- Indications of Irradiated Components
- Shelf Life of Irradiated products
- Methods of Irradiation

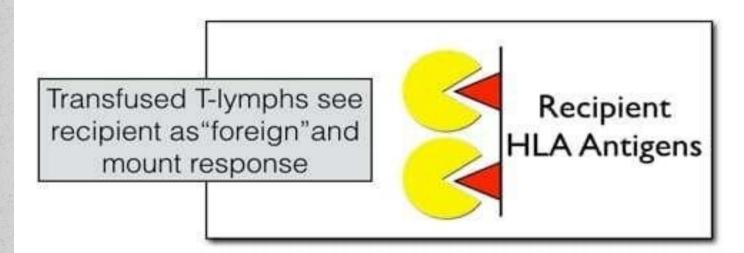
Background

- For Prevention of Transfusion Associated Graft versus Host Disease (TAGvHD)
- Irradiation: induces DNA crosslinks, prevents (dividing)
 lymphocyte proliferation

Transfusion Associated Graft versus Host Disease (TAGvHD)

- Delayed Immune transfusion reaction.
- Results from engraftment of foreign T cells.
- Clinically similar to Graft versus Host Disease (GvHD) except pancytopenia is a prominent feature.
- Usually arises 3 to 30 days after transfusion.
- Onset of symptoms occur early with signs and symptoms of bone marrow aplasia.

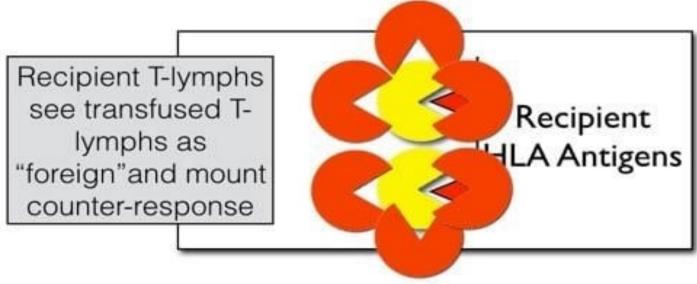
Factors for developing TA GvHD


- Predisposing conditions-
 - HLA antigen difference between donor & recipient
 - Presence of donor immunocompetent cells in blood component
 - A recipient incapable of rejecting donor immunocompetent cells
- The number of lymphocytes in a bag is determined by the age of the blood component and the irradiation status.
- Fresher blood components contain more viable T lymphocytes.

Pathophysiology

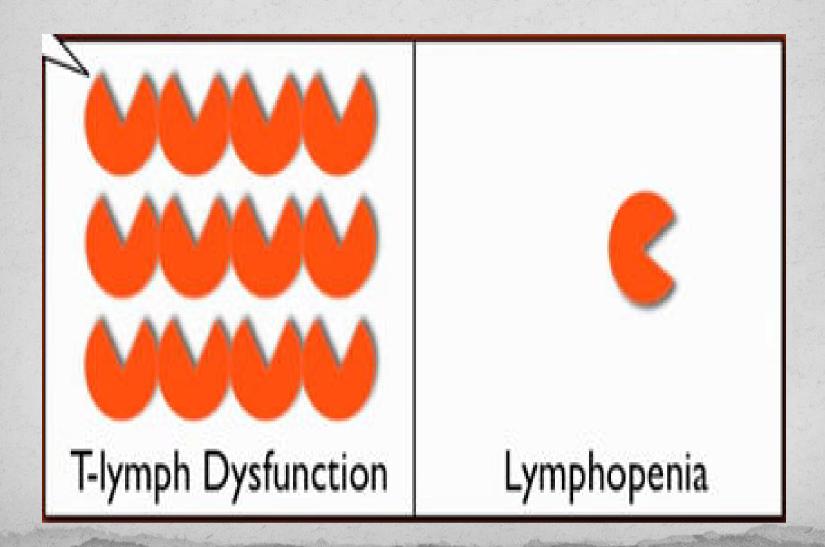
- Immuno-compromised host –
 Congenital/Acquired- lack the ability to reject the donor T cells
- Immuno-competent host When donor is Homozygous and recipient is heterozygous for HLA haplotype (sp Class I) – Host does not recognize donor lymphocytes as foreign

Uneventful Transfusion

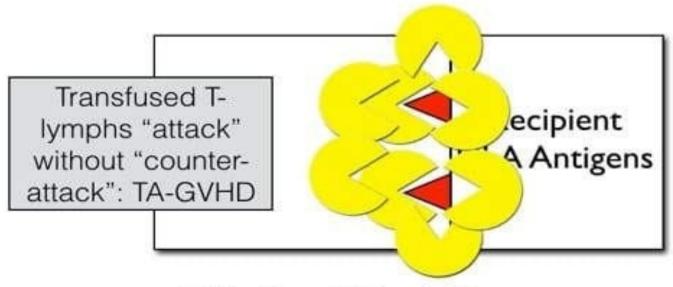

Normal Events

Attack!

Uneventful Transfusion


Normal Events

Counter-Attack!



Host is Immuno-compromised

Host is Immuno-compromised

TA-GVHD

Skin, liver, GI tract, Bone marrow

Host is Immuno-competent

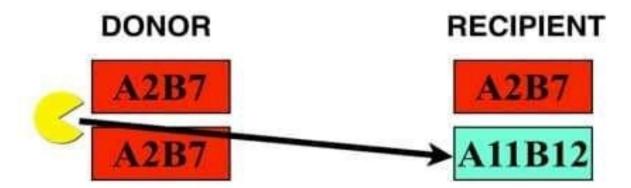
- Directed Donation (One way HLA match)-Most Common
- Recipients of fresh blood with lot of viable Tlymphocytes (granulocytes, fresh whole blood)
- Cardiac bypass surgery (In Japan)

Host is Immuno-competent

One-Way HLA Match (1)

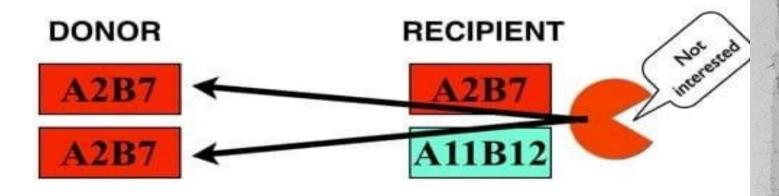
DONOR

HLA-<u>homozygous</u> Blood Donor RECIPIENT



HLA-<u>heterozygous</u> Blood Recipient

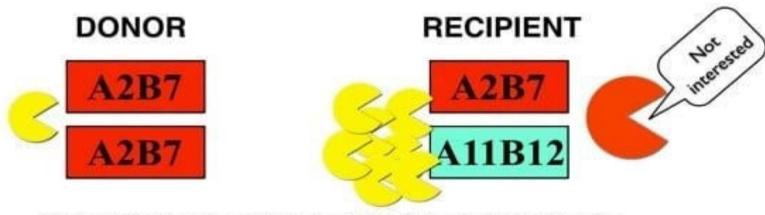
Host is Immuno-competent


One-Way HLA Match (2)

Donor recognizes recipient as "foreign" due to A11B12

Host is Immuno-competent

One-Way HLA Match (3)



Recipient does NOT think donor is "foreign" (A2B7 is shared)

Host is Immuno-competent

One-Way HLA Match (4)

Donor T-lymphocytes "attack" recipient tissues without normal "counter-attack"

Clinical Presentation

- Signs and symptoms usually begin 3-30 days after transfusion.
- Initially fever with skin manifestations
- Gastro Intestinal manifestations
- Hepatic dysfunction
- BM failure with pancytopenia
- Death often occurs with infection or bleeding manifestations

Skin Manifestations

- Erythematous maculopapular rash
- Pruritic
- Involves palms and soles and spreads throughout the body
- Blisters and ulcers in severe cases.

GIT - Manifestations

- Diarrhoea secretory, voluminous (>2L/day)
- Bleeding life threatening intestinal hemorrhage.
- Nausea, vomiting.
- Anorexia
- Abdominal pain

Liver

- Jaundice and hepatomegaly
- Mainly cholestatic hepatitis
 - lymphocytic infiltration of portal tracts
 - damage to bile duct epithelium
 - consequent destruction of bile ducts.
- Increased liver enzymes
- Increased serum billirubin

Diagnosis

- TA-GVHD is probably underdiagnosed since it may be wrongly attributed to
 - Intercurrent infection
 - Severe drug reaction
 - Auto immune diseases
- Histopathological/hematological features and detection of donor lymphocytes or DNA (mixed chimerism)

Diagnostic testing

- Skin biopsy
 - superficial perivascular lymphocyte infiltrate
 - necrotic keratinocytes
 - bullae formation
- Bone marrow examination
 - Hypocellular/aplastic marrow
 - Only macrophages present
- Liver biopsy
 - Small bile duct degeneration & eosinophilic necrosis
 - Intense periportal inflammation
 - Lymphocytic infiltration

Definitive diagnosis-

Identification of donor derived lymphocytes in recipient circulation/tissues+ presence of clinical symptoms

Differential diagnosis

- Acute viral hepatitis
- Severe drug reaction
- Dengue fever and leptospirosis
- Acute sero-conversion illness due to HIV infection

Prognosis

- Fatality
 - Profound marrow aplasia
 - Mortality>90%(1-3weeks)

Management of Suspected/proven disease

- Must be treated in a specialized unit
- High dose steroids —First line antilymphocyte and antiinflammatory activity
- Methotrexate & Cyclosporine-A to prevent the disease
- Steroid refractory GvHD
 - Anti-thymocyte globulin (ATG)
 - Azathioprine
 - Intravenous immunoglobulins
- Supportive therapy Antibiotics
- Stem cell transplantation

Prevention

- Prevention is better than cure
- Gamma Irradiation of cellular Blood component
 - 25Gy- centre of blood bag
 - 15Gy-peripheral part of blood bag
- Photochemical treatment of platelets & plasma

When to Irradiate

- At a minimum, cellular components shall be irradiated when:
 - 1.A patient is identified as being at risk for TAGVHD
 - 2. The donor of the component is a blood relative of the recipient
 - 3. The donor is selected for HLA compatability, by typing or crossmatching.

AABB Technical Manual Clinical Indications for Irradiated Components

Well-documented indications

- Intrauterine transfusions
- Premature, low-birthweight infants
- Newborns with erythroblastosis fetalis
- Congenital immunodeficiencies
- Hematologic malignancies or solid tumors (neuroblastoma, sarcoma, Hodgkin disease)
- Components that are crossmatched, HLA matched, or directed donations
 - Fludarabine therapy
 - Granulocyte components

Potential indications

- Other malignancies, including those treated with cytotoxic agents
- Donor-recipient pairs from genetically homogenous populations

Usually not indicated

- Patients with human immunodeficiency virus
- Term infants
- Non-immunosuppressed patients

General aspects about Irradiation of Blood components

- Lymphocyte viability is retained in stored red cells for at least 3 weeks
- TA-GvHD has been reported after transfusion of whole blood, red cells, platelets and granulocytes
- TA-GvHD has not been described following transfusion
 - frozen deglycerolized red cells, which are thoroughly washed free of leucocytes after thawing.
 - cryoprecipitate
 - fresh frozen plasma or
 - fractionated plasma products

Shelf Life of Irradiated Products

Irradiated Red Blood Cells

- Red cells can be irradiated up to 14 d after collection and stored for at least a further 14 d without significant loss of viability
- Shortened to 28 days after irradiation or until original expiration date, whichever comes first
- Where the patient is at particular risk from hyperkalaemia, e.g. intrauterine or neonatal exchange transfusion, it is recommended that red cells be transfused within 24 h of irradiation or that the cells are washed.

Platelets

- No effect of Gamma irradiation below 50 Gy on platelet function
- Platelets can be irradiated at any stage during storage and can thereafter be stored up to their normal shelf life after collection.

Granulocytes

- The evidence for irradiation damage to granulocyte function is conflicting
- But in any case granulocyte products should be transfused as soon as possible after irradiation
- All granulocytes should be irradiated before issue and transfused with minimum delay.

Methods for Irradiation

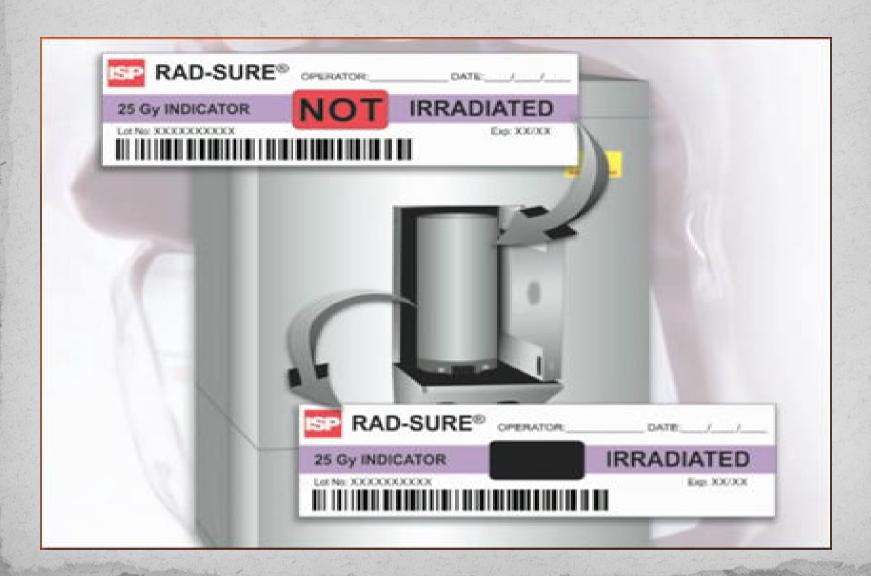
- Gamma Irradiators
- X-ray Irradiators

(Gamma rays and X-rays are similar in their ability to inactivate T lymphocytes in blood components at a given absorbed dose)

Gamma Irradiators

- Both cesium and cobalt irradiators are available
- Expensive
- Disposal present significant difficulties
- These highly radioactive cores may present a security risk in hospital settings
- As the source decays, regular recalibration is required and irradiation time progressively increases
- Strict regulatory requirements are required

Cell Irradiator


X-ray Irradiators

- Less Expensive
- Absence of a radioactive source
- Fewer regulatory requirements

Effective Dose of Radiation

- Dose to the center of the irradiation field must be at least 25 Gy
- Minimum delivered dose delivered to any other portion must be 15 Gy
- No more than 50 Gy should be delivered to the product.
- Special labels (radiochromic film labels which change color upon being irradiated) are affixed to units to confirm irradiation of an adequate dosage
- Process takes 5minutes.

Cons of Irradiated Products

- Reduced shelf life 35->28 days
- Leakage of potassium
- Theoretical risks
 –Malignant change? Reactivation of latent virus?
 Plastic leakage?
- Practical issues
 –Cost/upkeep/validation/security of irradiators

Non-irradiation Prevention Strategies?

- Leukocyte reduction has been shown to reduce the risk of TAGVHD, especially in a genetically diverse population, but is not a substitute for irradiation in at-risk populations.
- Psoralen (S59) + ultra-violet A used for pathogen inactivation

Conclusions

- Prevention is only the key for this deadly disease.
- All donor blood and blood products for immuno compromised, suspected or potentially immunocompromised patients should be irradiated.
- As new potent immunosupressive drugs and biological agents are introduced into practice, there is a need for regular review of recommendations regarding irradiated blood components.

References

- 1. Transfusion-Associated Graft-VersusHost Disease in Severe Combined Immunodeficiency; S Sebnem Kilic, S Kavurt, S Balaban Adim: J Investig Allergol Clin Immunol2010; Vol. 20(2): 153-156
- 2. Transfusion-associated graft-versus-host disease; D. M. Dwyre & P. V. Holland: Vox Sanguinis, 2008 95;85–93
- 3. Treleaven, J., Gennery, A., Marsh, J., Norfolk, D., Page, L., Parker, A., Saran, F., Thurston, J. and Webb, D. (2011), Guidelines on the use of irradiated blood components prepared by the British Committee for Standards in Haematology blood transfusion task force. British Journal of Haematology, 152: 35–51. doi:10.1111/j.1365-2141.2010.08444.x
- 4. Review Transfusion-associated graft-versus-host disease, BJH 2002;117:275–287

References

- 5. Denise M. Harmening. Modern Blood Banking & Transfusion Practices. 6th Edition.
- 6. http://www.bbguy.org/education/videos/whyirradiate/
- 7. Rossi's Principles of Transfusion Medicine
- 8. TA-GvHD management guidelines –NHS

Thank You