

AMPUTATION: PROSTHESIS

OVERVIEW

- Definitions
- Types of prosthesis
- Materials used
- Prescription Criteria
- Recent Advancement

DEFINITIONS

Prosthetics

 The branch of medicine dealing with the Study, Production and use of artificial body parts.

Prosthesis

 It is an artificial device extension that replaces a absence/lost body part.

Prosthetist

The professional skilled in making or fitting prosthetic devices

3

TYPES OF PROSTHESIS

Types based on Function:

- Functional Prosthesis (Body-powered or Externally powered system)
- Cosmetic Prosthesis
- Activity Specific Prosthesis

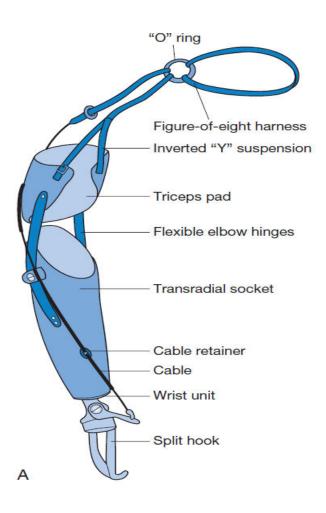
Types Based on Design:

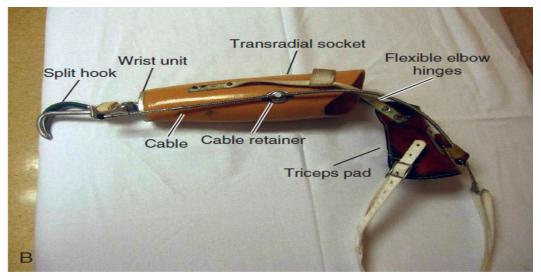
- Exoskeletal Design
- Endoskeletal Design

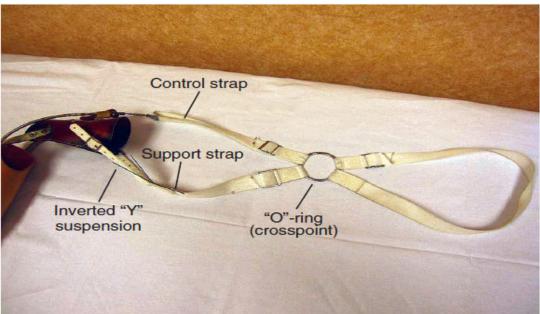
MATERIALS USED FOR PROSTHESIS

- 1) Wood commonly willow which is light weight, resilient
 & easily shaped.
- 2) Aluminum & its alloys which is light weight, rust free & durable.
- 3) Plastic and PVC materials.
- 4) Carbon fiber light weight, strong, rust free and durable.
- 5) Leather derivatives.
- 6) costly metals Titanium, Ni, Co etc.

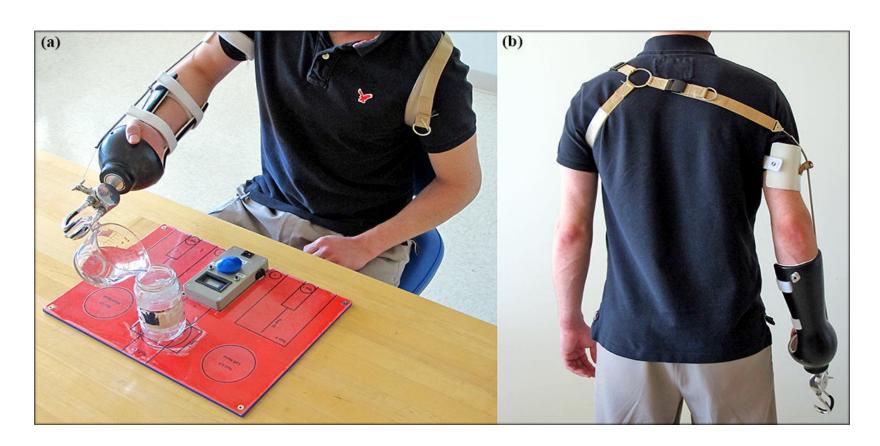
5


TYPES OF UPPER LIMB PROSTHESIS

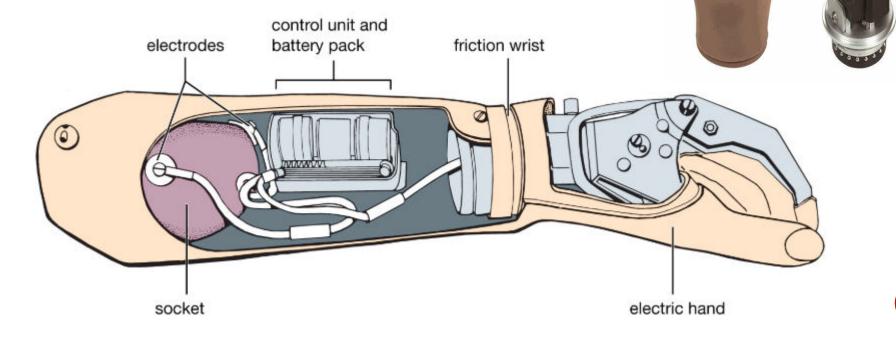

- Body-powered prostheses: use forces generated by body movements transmitted through cables to operate joints and terminal devices.
- Externally powered prostheses: use muscle contractions or manual switches to activate the prosthesis.
- 1) Myoelectrically controlled prosthesis using surface electrodes to detect electrical activity from select residual limb muscles to control electric motors.
- 2) Switch-controlled prostheses A switch can be activated by the movement of a remnant digit or part of a bony prominence against



DIFFERENT PARTS OF A UPPER LIMB


PROSTHESIS

DIFFERENT PARTS OF A UPPER LIMB PROSTHESIS



MYOELECTRICALLY CONTROLLED PROSTHESIS

• The two-site/two-function (dual-site) system

One-site/two-function (single-site) system

COSMETIC PROSTHESIS

ACTIVITY SPECIFIC PROSTHESIS

ADVANTAGES AND DISADVANTAGES OF MYOELECTRIC AND BODY-POWERED DEVICES

Advantages	Disadvantages	
Myoelectric Devices		
 Do not require a harness or cable Looks like natural-appearing arm Battery powered, so motor strength and coordinated mobility not as important Newer batteries have reduced weight Provides strong grip force 	 Higher initial cost Heavier Dependence on battery capacity and voltage Higher repair cost Dependence on battery life 	
Body-Powered Devices		
 Lower initial cost Lighter Easier to repair Offer better tension feedback to the body 	 Mechanical appearance Some people have difficulty using them Dependent on motor strength 	

BIONIC HAND

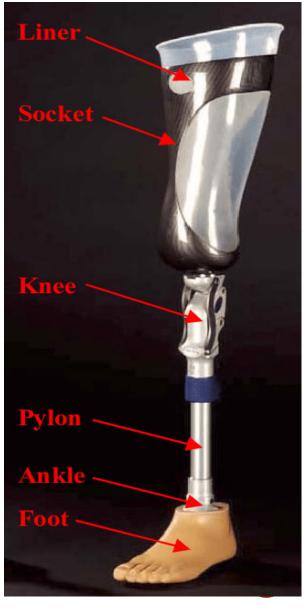
- Multi-articulating myoelectric hands
- Individual motors in each finger
- Microprocessors continuously monitor the position of each finger
- Automatically senses when a gripped item
- Different grip patterns

13

TYPES OF LOWER LIMB PROSTHESIS

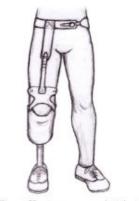
1) Exoskeletal Design

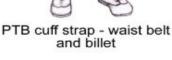
2) Endoskeletal Design

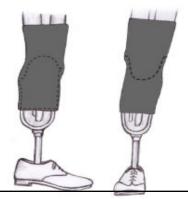


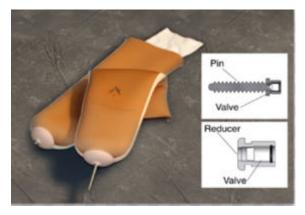
DIFFERENT PARTS OF A LOWER LIMB

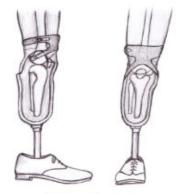
PROSTHESIS -

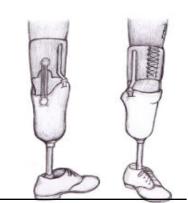

- Socket Interface between stump and prosthesis- most important.
- Suspension which holds prosthesis.
- Prosthetic shank mounting block & ankle block in exoskeletal & pylon in endoskeletal prosthesis.
- Prosthetic joint knee, ankle
- Foot / ankle foot assembly.

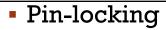



SUSPENSION


- Fork strap with waist belt
- Cuff
- Sleeve
- Supracondylar
- Supracondylar supra-patelar
- Gel or elastomeric
- Suction
- Vacuum assisted







PTB cuff strap

Thigh corset - Due to weight usually comes with waist belt and fork strap

SOCKETS

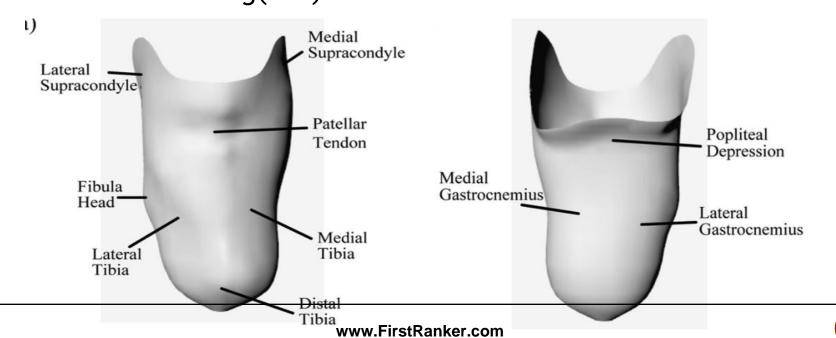
1) Quadrilateral Socket

Quadrilateral Socket Relief for hamstring tendon Ischial seat Relief for gluteus maximus Medial Relief for rectus femoris Anterior Relief for adductor longus b Ischial Containment Socket Ischial tuberosity Trochanter Medial* Adductor iongus Anterior

2) Ischial containment socket

SOCKETS

Socket design—


- Plug fit(obsolete)
- Patellar Tendon Bearing(PTB)
- Total Surface Bering(TSB)

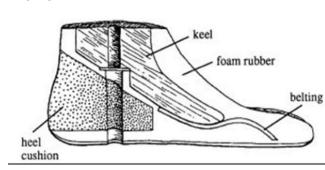
Patella Tendon Bearing Socket

Total Surface Bearing Socket

KNEE MECHANISM

- Manual locking
- Single axis with constant friction
- Weight-activated stance control (safety knee)
- Polycentric
- Hydraulic or pneumatic swing phase control
- Hydraulic swing and stance control
- Microprocessor control (stance or stance and swing phase control)

19

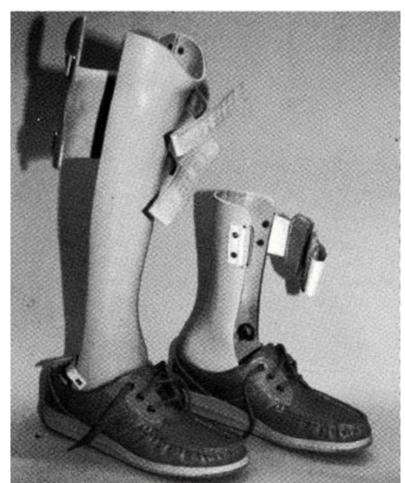

KNEE MECHANISM

FOOT ANKLE ASSEMBLY

- 1) SACH foot
- 2) Single axis foot
- 3) Multi-axial foot
- 4) Dynamic response foot

SYMES AMPUTATION

- Long residual limb & end weight bearing
- Poor cosmesis & limited foot options
- Three conventional types



PARTIAL FOOT AMPUTATION

- AFO style prosthesis is usually needed
- It extends up to the the pateller tendon to distribute forces

PRE PRESCRIPTION EVALUATION

- Medical factors
- Amputation type
- General health
- Stump

Stump: Scar, skin, neuroma, spur, hypersensitivity, redundant tissues, range of motion, strength and phantom pain

PRESCRIPTION CRITERIA

- Patient's requirement
- Activity Level
- Socio-Economic Condition
- Personal preference
- Availability

PATIENT'S REQUIREMENT

Patient's Vocation

- Executive / BusinessmanBetter limbs (sophisticated)
- Manual workerHeavy duty (conventional)

PATIENT'S AGE AND SEX

- Infant Soft prosthesis
- Child Light weight limb
- Adolescent Functional limb advanced version limb
- Adult Functional limb advanced version limb
- Elderly Light weight limb
- Female Better cosmetic limb

MEDICARE FUNCTIONAL CLASSIFICATION LEVEL (MFCL) DESCRIPTIONS

Functional Index Level	Description	Recommended Prosthetic Components
K0	No ability or potential to ambulate or transfer with use of a prosthesis and prosthesis does not enhance the quality of life	None for function Potential for cosmetic prosthesis
KI	Ability or potential to transfer or ambulate with a prosthesis for household distances on level surfaces at a fixed cadence	Feet: solid ankle cushion heel, single axis Knees: manual locking, weight-activated stance control
K2	Ability or potential to ambulate limited community distances and traverse low-level environmental barriers. Ambulation at a fixed cadence	Feet: multiaxial and flexible keel feet Knees: weight-activated stance control
K3	Ability or potential to ambulate unlimited community distances and traverse most environmental barriers. Ambulation with variable cadence	Feet: multiaxial, energy storing Knees: hydraulic, pneumatic, and microprocessor controlled
K4	Ability or potential to exceed normal ambulation activities and use a prosthesis for activities exhibiting high impact, stress, or energy levels	Feet: energy storing or other specialty feet Knees: no specific limitations

PATIENT'S EXPERIENCE

- Old amputee has good experience of previous prosthesis
- Knows the pros and cons
- Take advantage of his experience with previous prosthesis
- No need to change.

PATIENT'S PERSONAL PREFERENCE

- May be unrealistic
- Listen
- May be possible / impossible
- Do the needful most suitable

EXAMPLE PRESCRIPTIONS

 For a 24 year old female teacher sustained an open comminuted fracture & had a mid-thigh amputation after osteomyelitis

Adv.

- AK Prosthesis with
- Total contact thermoplastic Ischial containment socket
- TES belt suspension
- Hydraulic knee joint
- Lightweight dynamic-response foot
- Cosmetic foam cover

EXAMPLE PRESCRIPTIONS

 For a 72 year old retired man with type II diabetes & peripheral vascular disease with BK amputation for infected non-healing ulcer & gangrene

Adv.

- BK Prosthesis with
- total contact PTB thermoplastic socket
- foam liner (soft insert)
- lightweight align able shank
- SACH foot

Thank you

33

MMM.FirstRanker.com