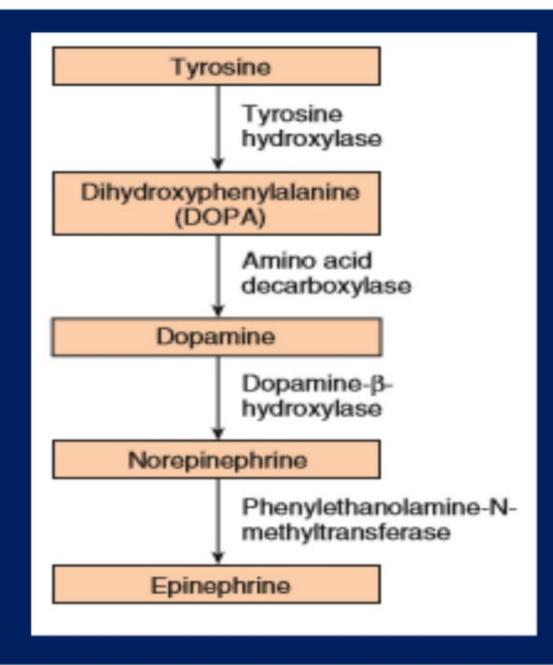


Adrenal Medullary Hormones

Secretions of the gland

Catecholamines:


Epinephrine

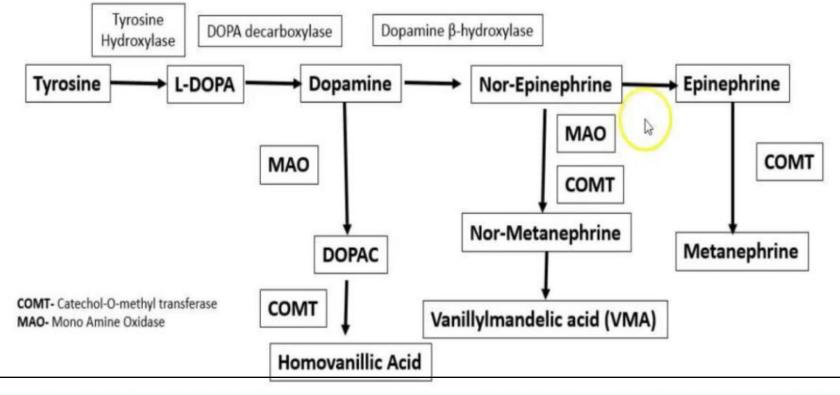
Nor-epinephrine

Dopamine

 Adrenal medulla is a sympathetic ganglion in which the post ganglionic neurons have lost their axons and become secretory cells

Catecholamines

- PNMT is found in brain and adrenal medulla
- Adrenal PNMT is induced by glucocorticoids
- After hypophysectomy, epinephrine concentration decreases
- In 21 β-hydroxylase deficiency adrenal medulla is dysplastic



Catecholamines

- 95% dopamine and 70% Nor-epinephrine and epinephrine is conjugated to sulfate
- On standing the levels of free norepinephrine increases by 50-100%
- After adrenalectomy, plasma norepinephrine levels remain unchanged but free epinephrine level falls

Adrenergic Neurotransmission and Drugs affecting it

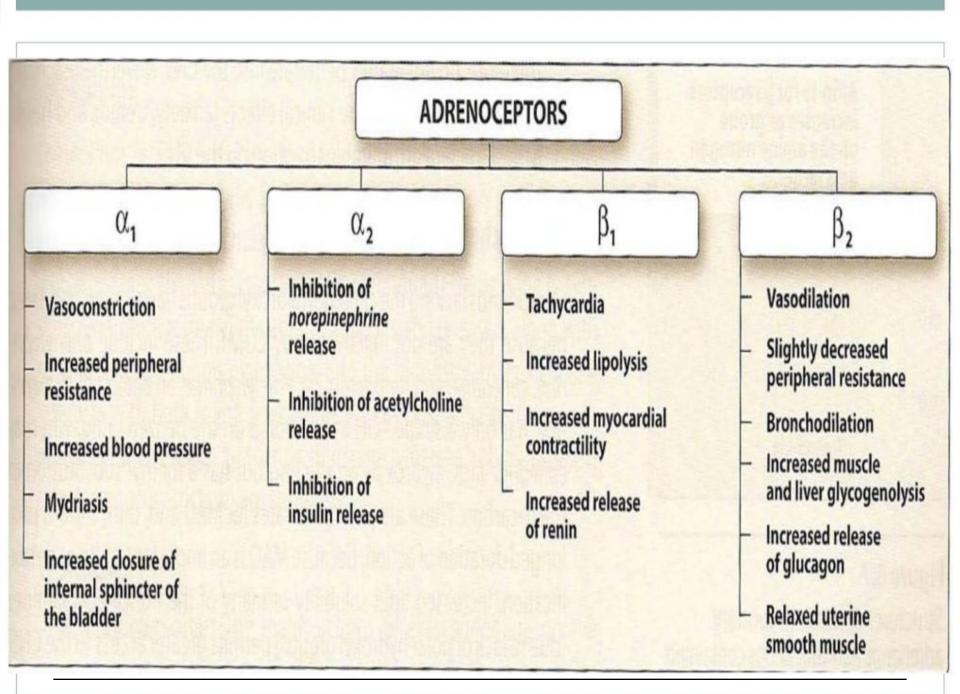
Synthesis and Metabolism of Catechol amines

- Catecholamines are stored in granules with ATP
- Granules also contain chromogranin A, opioid peptides
- Adrenomedullin is also found

Catecholamines			
Dopamine	D ₁ , D ₅	†Cyclic AMP	
	D ₂	+Cyclic AMP	†K ⁺ , ±Ca ²⁺
	D ₃ , D ₄		
Norepinephrine	<u>~</u> 1	+IP3, DAG	4K+
	α_2	+Cyclic AMP	†K ⁺ , _‡ Ca ²⁺
	β_1	†Cyclic AMP	
	B_2	+Cyclic AMP	
	Β ₃	+Cyclic AMP	

Regulation of catecholamines

- Reduced in sleep
- Increased in emergency situations
- W.B.Cannon called it "The emergency function of sympathoadrenal system"
- Drugs
- NE is increased by emotional stresses with which the individual is familiar
- Epinephrine rises in stresses due to unexpected situation


Effects of Catecholamines

- Increases glycogenolysis in liver and skeletal muscles
- Increases insulin and glucagon secretion by β- adrenergic mechanisms
- Decreases insulin and glucagon secretion by α- adrenergic mechanisms
- Increases FFA mobilization
- Increases plasma lactates
- Stimulates metabolic rate

Effects of Catecholamines

- NE and Epinephrine both increase rate and force of myocardial contraction
- Increases myocardial excitability
- Can lead to extrasystoles and arrythmias
- NE produces vasoconstriction
- Epinephrine causes vasodilatation

Effects of Catecholamines

- Catecholamines increase alertness
- Increases metabolic rate due to vasoconstriction and lactate oxidation
- When injected increases potassium levels and later decreases
- Dopamine causes renal and mesenteric vasodilatation
- Elsewhere DA causes vasoconstriction
- DA has positive inotropic effect on heart
- DA is useful in treatment of shock

www.FirstRanker.com