

Body fluid compartments

Learning Objectives

To learn:

- Composition of body fluid compartments.
- Differences of various body fluid compartments.
- Molarity, Equivalence, Osmolarity-Osmolality, Osmotic pressure and Tonicity of substances
- Effect of dehydration and overhydration on body fluids

Why is this knowledge important?

•To understand various <u>changes</u> in body fluid compartments, we should understand normal configuration of body fluids.

Total Body Water (TBW)

Water is 60% by body weight (42 L in an adult of 70 kg - a major part of body).

Water content varies in different body organs & tissues,

Electrolytes distribution in body fluid compartments

Molarity

A set 'Terminology' is required to understand change of volume &/or ionic conc of various body fluid compartments.

Definition		
Example		

Equivalence

 $mEq/L = mmol/L \times valence$

Osmolarity

Osmolarity is total no. of osmotically active solute particles (the particles which attract water to it) per 1 L of solvent - Osm/L.

Example-

Osmolarity and Osmolality?

Osmolarity is total no. of osmotically active solute particles per 1 L of solvent - Osm/L

Osmolality is total no. of osmotically active solute particles per 1 Kg of solvent - Osm/Kg

Osmosis

Tendency of water to move passively, across a semi-permeable membrane, separating two fluids of **different osmolarity** is referred to as 'Osmosis'.

Osmotic Pressure

Osmotic pressure is the pressure, applied to stop the flow of solvent molecules from low osmolarity to a compartment of high osmolarity, separated through a semi-permeable membrane.

Normal osmolality of the ECF and ICF

Averages 280-300 mOsm/L

Osmolality of ICF

Pressures causing water moves freely between various body fluid compartments

Tonicity

Tonicity of a solution defines **cell volume change** that occurs, if the cell is placed in that solution.

Significant points of the Lecture

Importance of the knowledge about Body Fluid Compartment –

Water distribution in different compartment-

Ionic difference of different body fluid compartments-Major cation and anions-

Difference of Molarity, Equivalence, Osmolarity and Osmolality, Tonicity-

Next Lecture

Basic principles for analysis of fluid shifts between ICF & ECF

•All exchanges of water and solutes with the external environment occur through the extracellular fluid (ECF)

- e.g. intake or loss via the
- Gastrointestinal tract
- Intravenous route.

Basic principles for analysis of fluid shifts between ICF & ECF

- ■Hyposmotic dehydration/overhydration will result in cell volume ↑ and net Osmolarity↓
- Hyperosmotic dehydration/overhydration will result in cell volume ↓and net Osmolarity↑

Clinical implications

Water loss from body (ECF) - **Dehydration (volume contraction)**

Excess water gain to the body (ECF) - Overhydration (volume expansion)

Signs and symptoms of 'dehydration' ↓ and 'overhydration' ↓

Dehydration (volume contraction)

Three types:

- -Isosmotic dehydration
- -Hyperosmotic dehydration,
- -Hyposmotic dehydration

Overhydration (volume expansion)

Three types:

- -Isosmotic overhydration
- -Hyperosmotic overhydration
- -Hyposmotic overhydration

www.FirstRanker.com

www.FirstRanker.com

Adapted from: Costanzo, L., Physiology, Table 6-2, p. 245

Summary of Disturbances in Fluid Shifts in Health and Disease

Туре	Example	ECF volume	ICF volume	osmolarity
Isosmotic volume contraction	-diarrhea -burn	1	No Change	No Change
Isosmotic volume expansion	-Isotonic NaCl infusion	1	No Change	No Change
Hyposmotic volume contraction	-aldosterone insufficiency	1	1	1
Hyposmotic volume expansion	-High water intake -SIADH	1	1	1
Hyperosmotic volume contraction	-sweating -fever -diabetes insipidus	1	1	1
Hyperosmotic volume expansion	-High NaCl intake	1	1	1

Thank you