

Cardiac Cycle

Cardiac Cycle

- Cardiac cycle is the mechanical sequence of events as blood enters the atria and leaves the ventricles
- The events includes
 - 1. Changes in the pressures in different chambers of the heart
 - 2. Changes in the volume in different chambers of the heart
 - 3. Changes in the aortic, pulmonary arteries
 - 4. Heart sounds
 - 5. ECG changes

Cardiac Cycle

Phases of Cardiac Cycle

Ventricular Systole

- > Isovolumetric contraction
- Rapid ejection
- Slow ejection

Phases of Cardiac Cycle

Ventricular Systole

- Isovolumetric contraction
- Rapid ejection
- > Slow ejection

Ventricular Diastole

- Isovolumetric relaxation
- Rapid filling
- Slow filling (Diastasis)
- Filling d/t Atrial Systole

Phases of Cardiac Cycle

Ventricular Systole

- Isovolumetric contraction
- Rapid ejection
- Slow ejection

Ventricular Diastole

- Isovolumetric relaxation
- Rapid filling
- Slow filling (Diastasis)

Start

Filling d/t Atrial Systole

Cardiac Cycle

Phases

Phases

Cardiac Cycle

Phases

Late diastole—both sets of chambers are relaxed and ventricles fill passively.

Atrial systole—atrial contraction forces a small amount of additional blood into ventricles.

Atrial diastole
Ventricular systole

3 Isovolumic ventricular contraction—first phase of ventricular contraction pushes AV valves closed but does not create

enough pressure to open semilunar

valves.

Phases of Cardiac Cycle

Ventricular Systole

- > Isovolumetric contraction
- Rapid ejection
- Slow ejection

Ventricular Diastole

- Isovolumetric relaxation
- Rapid filling
- ➤ Slow filling (Diastasis)
- Filling d/t Atrial Systole

Ventricular Systole

- Isovolumetric contraction phase
 - Rising ventricular pressure results in closing of AV valves (1st heart sound – "lubb")
 - Ventricles are contracting but no blood is leaving
 - Ventricular pressure not great enough to open semilunar valves
 - Ventricular ejection phase opens semilunar valves
- Ventricular ejection phase
 - Semilunar valves opens
 - Rapid Ejection (70% blood)
 - Slow ejection (30% blood)

Ventricular Diastole

- Isovolumetric relaxation
 - volume does not change as ventricles relax, pressure drops and AV valves open
- Ventricular filling
 - Rapid ventricular filling:as blood flows from full atria
 - diastasis: as blood flows from atria in smaller volume
 - atrial systole pushes final 20-25 ml blood

Phases of Cardiac Cycle

Ventricular Systole	Duration (approximate)
> Isovolumetric contraction	0.05 sec
Rapid ejection	0.10 sec
Slow ejection	0.15 sec
Ventricular Diastole	
Isovolumetric relaxation	0.10 sec
Rapid filling	0.10 sec
➤ Slow filling (Diastasis)	0.20 sec
Filling d/t Atrial Systole	0.10 sec

Normal Volume of Blood in Ventricles

- Atrial systole pushes final 20-25 ml blood (20%)
- After atrial contraction, 110-120 ml in each ventricle (end-diastolic volume)
- Contraction ejects ~70 ml (stroke volume output)
- Thus, 40-50 ml remain in each ventricle (End systolic volume)
- The fraction ejected is then ~60% (ejection fraction)

A Simple Model of Stroke Volume

Ventricular Pressures

- Blood pressure in aorta is 120 80 mm Hg
- Blood pressure in pulmonary trunk is 25 8 mm Hg
- Ventricular pressure usually not increases during diastole
- Right Atrial pressure changes reflected in Jugular vein

Jugular venous pulse waves

Jugular venous pulse waves

- a-wave is due to atrial systole which causes increase in the intra-atrial pressure
- C-wave occurs during the isometric contraction of the ventricles due to bulging of the tricuspid valve
- V-wave is due to accumulation of blood during late part of the ventricular systole or protodiastolic phase and isometric relaxation of the ventricles

Jugular venous pulse waves

- X-wave is due to downward displacement of the A-V valve (tricuspid valve) and the AV ring during maximum ejection phase of ventricular contraction
- Y-wave is due to opening of the AV valve (tricuspid valve) during maximal ventricular filling phase

Jugular venous pulse waves

- "a-c" interval measures the time of conduction of the cardiac impulse from the right atrium to the ventricles
- The a-c interval corresponds to the P-R interval of the ECG
- The "a-c" interval is prolonged in cases of delayed conductivity in the AV bundle which is an early sign of heart block
- In partial heart block, the number of "a" waves is greater than the number of the "c" or "v" waves.
- In atrial fibrillation, the "a" wave is absent.

Putting it all together!

Putting it all together!

Thank You

www.FireiRanker.com