

Tubular Processes – Handling of TF

Learning Objectives

To understand

- •Terminology to know processes of handling tubular fluid -
- Renal Tubular Reabsorption or Secretion- Transcellular & paracellular pathway
- Tubular Cells Tight Junctions
- To calculate secretion or reabsorption rate of any solute
- Nephron **Term**inology
- Various **tran**sport mechanisms in proximal **con**voluted tubules
- Glomerulo-tubular balance, and it's physiologic importance
- Glucose transport maximum

Terminology to know processes of handling tubular fluid

Tubular Cells – Tight Junctions

- Tight junctions
- ■Tight junctions claudins and occludins.

Tubular Reabsorption/Secretion - Routes/Pathways

Transcellular pathway:

Paracellular pathway:

Pressures favoring reabsorption by bulk flow into peritubular Cps

GENERAL PRINCIPLES OF MEMBRANE TRANSPORT – across cell membranes

- Passive transport of substances (without expenditure of energy):
- •Active transport of subtances (with the expenditure of energy):

Solvent drag-

www.FirstRanker.com

www.FirstRanker.com

Nephron: Tubular Segments

Proximal Convoluted Tubule Vasa Recta Loop of Henle Collecting Duct

Three major segments:

•These segments determine the composition & volume of the urine by the

Reabsorption and Secretion Rates of substances in renal tubules

Nephron Terminology

TF/P ratio

2. TF/P_{inulin}

3. [TF/P]x /[TF/P]inulin ratio

Exercise questions

www.FirstRanker.com

Transport mechanisms of different solutes of TF - PxC7

First half of Px CT

Early Part of Proximal Convoluted Tubule PXCT Active NaCl Transport H2O NaCl Urea ++ ++ ++ +

Na+ Reabsorption

www.FirstRanker.com

Early Part of Proximal Convoluted Tubule PXCT Active NaCl Transport H2O NaCl Urea ++ ++ ++ +

H+ secretion and HCO3-Reabsorption

Early Part of Proximal Convoluted Tubule PXCT Active NaCl Transport H2O NaCl Urea ++ ++ ++ +

Applied-

Mutations in the GLUT2 gene

Paracellular reabsorption

Second half of Px CT

Second half of PxCT

Active NaCl Transport H2O NaCl Urea PxCT ++ ++ + +

Na+ and Clreabsorption

Second half of PxCT

Active NaCl Transport H2O PxCT ++ ++

NaCl

Urea

(Mechanism: Na+H+ - Cl-Anion Antiporters)

Second half of PxCT

Na+-glucose symporter (SGLT1)

Glucose Na* Glucose Na* Na*/K* ATPase pump

Lateral intercellular space J

Distal proximal tubule

Second half of Proximal Convoluted Tubule

- -Water reabsorption
- Urea reabsorption

Pinocytosis—An Active Transport Mechanism for Reabsorption of large molecules such as Proteins in PxT

Summary of handling of % of water & solutes – Px CT

Summary of Transporters in Px CT

Osmolality of TF Leaving PxCT

Clinical Relevance – Acute Tubular Necrosis (ATN)

Transport Maximum (Tm)

Blood glucose level and corresponding Glucose tubular load

This glucose blood concentration (200 mg/dl) and the filtered load of 250 mg/min are termed as the renal threshold for glucose.

Cause of difference of TmG and Renal threshold for glucose Phenomenon of SPLAY

(or glucose amount filtered)

Regulation of Tubular processes

Because it is essential to maintain a precise balance between tubular reabsorption and glomerular filtration, there are multiple **nervous**, **hormonal**, and **local control** mechanisms that regulate tubular reabsorption.

Glomerulo-tubular Balance

Glomerulo-tubular balance - Mechanism

Tubuloglomerular feedback vs Glomerulo-tubular balance

Self Assessment

Percentage of filtered urea, reabsorbed by Px CT is about :

- 1.00-25
- 2.50-65
- 3. 70-95
- 4.80-100

If there is increased load of NaCl and water, what will happen in Px CT

- 1) There will be an increase in NaCl and water reabsorption.
- 2) There will be a decrease in NaCl and water reabsorption.
- 3) There will be an increase in NaCl but water reabsorption will decrease
- 4) There will not be any change

Water channel present in proximal convoluted tubule is:

- 1. Aquaporin 1
- 2. Aquaporin 2
- 3. Aquaporin 3
- 4. Aquaporin 4

At the leaving end of PxCT, percentage of filtered solute and water is approximately:

- 1) 35% solute and 35% water
- 2) 45% solute and 45% water
- 3) 35% solute and 45% water
- 4) 45% solutewand 35% water

Thank you

www.FirstRanker.com