

Structure and Function of Skeletal Muscle

Skeletal Muscle

- Human body contains over 400 skeletal muscles
 - 40-50% of total body weight
- Functions of skeletal muscle
 - Force production for locomotion and breathing
 - Force production for postural support
 - Heat production during cold stress

Structure of Skeletal Muscle: Connective Tissue Covering

- Epimysium
 - Surrounds entire muscle
- Perimysium
 - Surrounds bundles of muscle fibers
 - Fascicles
- Endomysium
 - Surrounds individual muscle fibers

Organization of Skeletal Tissue

Structure of Skeletal Muscle: *Microstructure*

- Sarcolemma
 - Muscle cell membrane
- Myofibrils
 - Threadlike strands within muscle fibers
 - Actin (thin filament)
 - Troponin
 - Tropomyosin
 - Myosin (thick filament)

Organization of a Muscle Fiber

Structure of Skeletal Muscle: *The Sarcomere*

- Further divisions of myofibrils
 - Z-line
 - A-band
 - I-band
- Within the sarcoplasm
 - Sarcoplasmic reticulum
 - Storage sites for calcium
 - Transverse tubules
 - Terminal cisternae

Arrangements of Myofilaments in a Sarcomere

The Neuromuscular Junction

- Site where motor neuron meets the muscle fiber
 - Separated by gap called the neuromuscular cleft
- Motor end plate
 - Pocket formed around motor neuron by sarcolemma
- Acetylcholine is released from the motor neuron
 - Causes an end-plate potential (EPP)
 - Depolarization of muscle fiber

Illustration of the Neuromuscular Junction

Motor Unit

- Single motorneuron & muscle fibers it innervates
- Eye muscles 1:1 muscle/nerve ratio
- Hamstrings 300:1 muscle/nerve ratio

Molecular Organization of Thick Filaments

Muscular Contraction

- The sliding filament model
 - Muscle shortening occurs due to the movement of the actin filament over the myosin filament
 - Formation of cross-bridges between actin and myosin filaments
 - Reduction in the distance between Z-lines of the sarcomere

The Sliding Filament Model of Muscle Contraction

► Changes in a Sarcomere During Contraction

Cross-Bridge Formation in Muscle Contraction

Sliding Filament Theory

- Rest uncharged ATP cross-bridge complex
- Excitation-coupling charged ATP crossbridge complex, "turned on"
- Contraction actomyosin ATP > ADP & Pi + energy
- Recharging reload cross-bridge with ATP
- Relaxation cross-bridges "turned off"

Muscle Function

- All or none law fiber contracts completely or not at all
- Muscle strength gradation
 - Multiple motor unit summation more motor units per unit of time
 - Wave summation vary frequency of contraction of individual motor units

Energy for Muscle Contraction

- ATP is required for muscle contraction
 - Myosin ATPase breaks down ATP as fiber contracts
- Sources of ATP
 - Phosphocreatine (PC)
 - Glycolysis
 - Oxidative phosphorylation

Sources of ATP for Muscle Contraction

Properties of Muscle Fibers

- Biochemical properties
 - Oxidative capacity
 - Type of ATPase
- Contractile properties
 - Maximal force production
 - Speed of contraction
 - Muscle fiber efficiency

Individual Fiber Types

Fast fibers

- Type IIb fibers
 - Fast-twitch fibers
 - Fast-glycolytic fibers
- Type IIa fibers
 - Intermediate fibers
 - Fast-oxidative glycolytic fibers

Slow fibers

- Type I fibers
 - Slow-twitch fibers
 - Slow-oxidative fibers

► Properties of Motor Units

► Force Production and Fatigue Curves of Fiber Types

(a) Force Production

(b) Fatigue Curves

www.FirstRanker.com

Comparison of Maximal Shortening Velocities Between Fiber Types

Histochemical Staining of Fiber Type

Fiber Types and Performance

- Power athletes
 - Sprinters
 - Possess high percentage of fast fibers
- Endurance athletes
 - Distance runners
 - Have high percentage of slow fibers
- Others
 - Weight lifters and nonathletes
 - Have about 50% slow and 50% fast fibers

► Fiber Type Distribution of Different Muscle Groups Among Athletes

Alteration of Fiber Type by Training

- Endurance and resistance training
 - Cannot change fast fibers to slow fibers
 - Can result in shift from Type IIb to IIa fibers
 - Toward more oxidative properties

Training-Induced Changes in Muscle Fiber Type

Hypertrophy and Hyperplasia

- Increase in size
- Increase in number

Age-Related Changes in Skeletal Muscle

- Aging is associated with a loss of muscle mass
 - Rate increases after 50 years of age
- Regular exercise training can improve strength and endurance
 - Cannot completely eliminate the agerelated loss in muscle mass

Types of Muscle Contraction

- Isometric
 - Muscle exerts force without changing length
 - Pulling against immovable object
 - Postural muscles
- Isotonic (dynamic)
 - Concentric
 - Muscle shortens during force production
 - Eccentric
 - Muscle produces force but length increases

Isotonic and Isometric Contractions (a) Muscle contracts and shortens (b) Muscle contracts but does not shorten No movement

Force Regulation in Muscle

- Types and number of motor units recruited
 - More motor units = greater force
 - Fast motor units = greater force
- Initial muscle length
 - "Ideal" length for force generation
- Nature of the motor units neural stimulation
 - Frequency of stimulation
 - Simple twitch, summation, and tetanus

KEIAUONSNIP BELWEEN SUMUUS Frequency and Force Generation

Length-Tension Relationship in Skeletal Muscle

optimal length Fewer cross-bridge interactions = reduced

tension development

Optimal length Maximal cross-bridge Ranker.com No cross-bridge interaction interaction = maximal tension development

optimal length = no tension development

Simple Twitch, Summation, and Tetanus

Force-Velocity Relationship

- At any absolute force the speed of movement is greater in muscle with higher percent of fast-twitch fibers
- The maximum velocity of shortening is greatest at the lowest force
 - True for both slow and fast-twitch fibers

Force-Power Relationship

- At any given velocity of movement the power generated is greater in a muscle with a higher percent of fast-twitch fibers
- The peak power increases with velocity up to movement speed of 200-300 degrees•second⁻¹
 - Force decreases with increasing movement speed beyond this velocity

Receptors in Muscle

- Muscle spindle
 - Detect dynamic and static changes in muscle length
 - Stretch reflex
 - Stretch on muscle causes reflex contraction
- Golgi tendon organ (GTO)
 - Monitor tension developed in muscle
 - Prevents damage during excessive force generation
 - Stimulation results in reflex relaxation of muscle

