

www.FirstRanker.com

Code I	No: B1102	R10	SET - 1
	I B. Pharmacy	Semester Supplementary Examinations, F	Sebruary - 2020
Time: 3 hours		MATHEMATICS-I	Max. Marks: 75
		Answer any FIVE Questions All Questions carry Equal Marks	
1. a)	The sum of the first of its first three term	and the third terms of a geometric progressions is 26. Find the progression.	on is 20 and the sum (8M)
b)	Resolve into partial	fractions $\frac{2x^2 - 1}{(x-1)(2x^2 + 5x + 2)}$	(7M)
2. a)	Find the coefficient	of x^5 in $\left(x-\frac{1}{x}\right)^{11}$.	(7M)
b)	Solve the system of $x - y + z = 4, 2x + 3$	equations by using Cramer's rule. y + 3z = 5, 3x - 2y + z = 7.	(8M)
3. a)	Prove that $\frac{\cos A}{1 - \tan A}$	$+\frac{\sin A}{1-\cot A}=\sin A+\cos A.$	(8M)
b)	Prove that $\cos\frac{\pi}{9}\cos\frac{\pi}{9}$	$s\frac{2\pi}{9}\cos\frac{3\pi}{9}\cos\frac{4\pi}{9} = \frac{1}{2^4}.$	(7M)
4. a)	Prove that $\tan \alpha + 2$	$\tan 2\alpha + 4\tan 4\alpha + 8\cot 8\alpha = \cot \alpha$	(7M)
b)	From the top of a h pillar are 30° and 6	iill 300 m high, the angle of depression of t 0^{0} . Find the height of the pillar.	op and bottom of a (8M)
5. a)	Find the coordinates the points $(5,2)$ and	s of the point which divides internally the line $(7,9)$ in the ratio 2 : 7.	e joining the pair of (8M)
b)	Find the locus of t $A(-2,0)$ and $B(2,0)$	he point P whose sum of the distances from is 16.	om the fixed points (7M)
6. a)	If $A = (2,-1)$ and B Units, then find the	=(4,7) and P moves so that area of the trillocus of P.	angle PAB is 9 sq. (8M)
b)	Find the equation o the lines $x + 2y = 15$	f the line passing through origin and the point $5,3x-5y = -32$.	nt of intersection of (7M)
7. a)	Evaluate $\lim_{x\to\infty} \sqrt{x^2}$	$x^{2}+1-\sqrt{x^{2}-1}$.	(8M)
b)	Find left and right d	erivatives of $f(x) = x $	(7M)
8. a)	Differentiate $\frac{(x+3)}{\sqrt{x}}$	$\frac{3}{2}$ with respect to x.	(8M)
b)	Show that $f(x) = \begin{cases} \\ \\ \\ \\ \\ \end{cases}$	$x^2, x \le 1$ $x^3, x > 1$ is continuous at $x = 1$.	(7M)
		1 - 6 1	

www.FirstRanker.com