FirstRanker's cond Semanary FirstRanker (Plastic)) WW FirstRanker.com 11710 : Engineering Mechanics : 2 SCT 3

Page ime :	es : 4 Three Hour	s	AW - Max. Mar	2932 ks : 80
N	Notes : 1. 2. 3. 4.	Answer three question from Section A and three question from S Assume suitable data wherever necessary. Illustrate your answer necessary with the help of neat sketches. Use of pen Blue/Black ink/refill only for writing the answer book.	ection B.	-
		SECTION - A	•	
a) State ar	nd explain different system of forces.		4
b) State ar	nd explain law of polygon of forces.		3
c)) Find the	e resultant of a given force system as shown in fig. 1.		7
		60 4 4 70° Fig. 1 200N		
		OR		
a)) Define	couple and state its characteristics.		4
b)) State ar	nd explain Varignon's theorem.		3
c)) Determ fig. 2. T	ine and locate position of resultant 'R' for the forces acting on L-ber Take reference point as 'A'. 50kN 0.2m A B C 45° $40\sqrt{2}$ D	t as shown in	. 7

State analytical and graphical conditions of equilibrium. 3. a)

State and explain Lami's theorem. b)

1 www.FirstRanker.com

3

3

3

3

7

- 4. State and explain parallel axis theorem. a)
 - Determine moment of Inertia about centroidal axes for a plane lamina as shown in fig. 4. b) 10

- 5. State assumption made in analysis of truss. a)
 - Define perfect and imperfect trusses. b)
 - Analyse the truss loaded as shown in fig. 5. Tabulate the result. c)

rstStateklaw's of drycfriction.

Ranker.<mark>com</mark>

www.FirstRanker.com

4

3

6

b) Define :i) Angle of repose

7.

- ii) Cone of friction
- c) A uniform rod AB of length 2.5 m weighing 500 N is hinged at B with end 'A' resting on a 750 N block which in turn rests on a horizontal plane as shown in fig. 6 Take $\mu = 0.3$ for all contact surfaces. Determine minimum value of 'P' required to start rightward motion of the block.

SECTION - B

- a) The rectilinear motion of a particle is defined by $a = 6\sqrt{v}$ where a is m/s² and v is in m/s. 7 When t = 2 sec, v = 36 m/s and s = 30m. Determine displacement of particle when t = 3 sec.
 - b) A projectile is fired from the edge of a 150 m cliff with an initial velocity of 180 m/s at 7 angle of 30° with the horizontal.
 Find :
 - i) The greatest elevation above the ground reached by projectile.
 - ii) The horizontal distance covered before striking the ground.

OR

- 8. a) Two trains, one moving at 90 km/hr and other at 120 km/hr, are heading towards one another 7 on a straight level track. When they are 3 km apart, both drivers simultaneously see the other's trains and apply their brakes. If the brakes decelerate each train at the rate of 1 m/s² determine whether trains will collide or not ?
 - b) An automobile starting from rest speed up to 40 m/sec with a constant acceleration of 4 m/s²
 7 runs at this speed for a time and finally comes to rest with deceleration of 5 m/s². If the total distance travelled is 1200 m find the total time required.
- 9. a) State and explain D'Alembert's Principle.
 - b) Two blocks A and B are released from rest on a 30° incline when they are 18 m apart. The 10 coefficient of friction under block A is 0.2 and the under the block B is 0.4. In what time block 'A' reaches the block B ? Refer fig. 7.

3

FirstRanker.com

4

4

9

6

- 10. a) Derive work-energy equation.
 - b) A body weighing 300 N is pushed up an inclined plane 30° with the horizontal. A 400 N
 9 force is acting parallel to the plane. If an initial velocity of the body is 1.5 m/s and coefficient of friction is 0.2. Determine what velocity the body will have after moving 6m. Refer fig. 8.

- **11.** a) What is Reversible and irreversible machine ?
 - b) What load can be lifted by an effort of 120 N, if the velocity ratio is 18 and efficiency of the machine at this load is 60% ?
 Determine law of machine, if it is observed that an effort of 200 N is required to lift a load of 2600 N and find the effort required to run the machine at a load of 3.5 kN.

OR

- **12.** a) Define :
 - i) Mechanical Advantage
 - ii) Velocity Ratio
 - iii) Efficiency of a machine
 - iv) Ideal machine
 - b) In a differential wheel and axle, the diameter of the effort wheel is 400 mm. The radii of the 7 axle are 150 mm and 100 mm respectively. The diameter of the rope is 10 mm. Find the load which can be lifted by an effort of 25 N assuming the efficiency of the machine to be 84%.
