P. Pages: 4

Time : Three Hours

Notes : 1. Answer three question from Section A and three question from Section B.
2. Assume suitable data wherever necessary.
3. Illustrate your answer necessary with the help of neat sketches.
4. Use of pen Blue/Black ink/refill only for writing the answer book.

SECTION - A

1. a) State and explain different system of forces.
b) State and explain law of polygon of forces.
c) Find the resultant of a given force system as shown in fig. 1 .

OR

2. a) Define couple and state its characteristics.
b) State and explain Varignon's theorem.
c) Determine and locate position of resultant ' R ' for the forces acting on L -bent as shown in fig. 2. Take reference point as ' A '.

3. a) State analytical and graphical conditions of equilibrium.
b) State and explain Lami's theorem.

FirstRanker.com
Firstranker's choice
c) Determine the forces in thwwW.FirstRankerlcom as showwiwwgFirstRanker.com

Fig. 3

OR

4. a) State and explain parallel axis theorem.
b) Determine moment of Inertia about centroidal axes for a plane lamina as shown in fig. 4 .

100 mm

5 mm
Fig. 4
5. a) State assumption made in analysis of truss.
b) Define perfect and imperfect trusses
c) Analyse the truss loaded as shown in fig. 5. Tabulate the result.

OR
b) Define :
i) Angle of repose
ii) Cone of friction
c) A uniform rod AB of length 2.5 m weighing 500 N is hinged at B with end ' A ' resting on a 750 N block which in turn rests on a horizontal plane as shown in fig. 6 Take $\mu=0.3$ for all contact surfaces. Determine minimum value of ' P ' required to start rightward motion of the block.

SECTION - B

7. a) The rectilinear motion of a particle is defined by a $=6 \sqrt{v}$ where a is m / s^{2} and v is in m / s. When $\mathrm{t}=2 \mathrm{sec}, \mathrm{v}=36 \mathrm{~m} / \mathrm{s}$ and $\mathrm{s}=30 \mathrm{~m}$. Determine displacement of particle when $\mathrm{t}=3 \mathrm{sec}$.
b) A projectile is fired from the edge of a 150 m cliff with an initial velocity of $180 \mathrm{~m} / \mathrm{s}$ at angle of 30° with the horizontal.
Find:
i) The greatest elevation above the ground reached by projectile.
ii) The horizontal distance covered before striking the ground.

OR

8. a) Two trains, one moving at $90 \mathrm{~km} / \mathrm{hr}$ and other at $120 \mathrm{~km} / \mathrm{hr}$, are heading towards one another on a straight level track. When they are 3 km apart, both drivers simultaneously see the other's trains and apply their brakes. If the brakes decelerate each train at the rate of $1 \mathrm{~m} / \mathrm{s}^{2}$ determine whether trains will collide or not?
b) An automobile starting from rest speed upto $40 \mathrm{~m} / \mathrm{sec}$ with a constant acceleration of $4 \mathrm{~m} / \mathrm{s}^{2}$ runs at this speed for a time and finally comes to rest with deceleration of $5 \mathrm{~m} / \mathrm{s}^{2}$. If the total distance travelled is 1200 m find the total time required.
9. a) State and explain D'Alembert's Principle.
b) Two blocks A and B are released from rest on a 30° incline when they are 18 m apart. The coefficient of friction under block A is 0.2 and the under the block B is 0.4 . In what time block 'A' reaches the block B ? Refer fig. 7.

10. a) Derive work-energy equation.
b) A body weighing 300 N is pushed up an inclined plane 30° with the horizontal. A 400 N force is acting parallel to the plane. If an initial velocity of the body is $1.5 \mathrm{~m} / \mathrm{s}$ and coefficient of friction is 0.2 . Determine what velocity the body will have after moving 6 m . Refer fig. 8 .

11. a) What is Reversible and irreversible machine ?
b) What load can be lifted by an effort of 120 N , if the velocity ratio is 18 and efficiency of the machine at this load is 60% ?
Determine law of machine, if it is observed that an effort of 200 N is required to lift a load of 2600 N and find the effort required to run the machine at a load of 3.5 kN .

OR
12. a) Define:
i) Mechanical Advantage
ii) Velocity Ratio
iii) Efficiency of a machine
iv) Ideal machine
b) In a differential wheel and axle, the diameter of the effort wheel is 400 mm . The radii of the axle are 150 mm and 100 mm respectively. The diameter of the rope is 10 mm . Find the load which can be lifted by an effort of 25 N assuming the efficiency of the machine to be 84\%

