10987 : Process Calculations : 3 CH 05 / 3 PP 05 / 3 CT 05

Notes: 1. All question carry marks as indicated.
2. Answer three question from Section A and three question from Section B.
3. Due credit will be given to neatness and adequate dimensions.
4. Assume suitable data wherever necessary.
5. Diagrams and chemical equations should be given wherever necessary.
6. Illustrate your answer necessary with the help of neat sketches.
7. Discuss the reaction, mechanism wherever necessary.
8. Use of cell phone is not allowed in the exam.
9. Use of pen Blue/Black ink/refill only for writing the answer book.

SECTION - A

1. a) A chemist is interested in preparing 500 ml of 1 normal, 1 molar and 1 molal solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$. Assuming the density of $\mathrm{H}_{2} \mathrm{SO}_{4}$ Solution to be $1.075 \mathrm{~g} / \mathrm{cm}^{3}$, calculate the quantities of $\mathrm{H}_{2} \mathrm{SO}_{4}$ to be taken to prepare these solutions.
b) Spent acid from fertilizer plant has the following composition by weight :
$\mathrm{H}_{2} \mathrm{SO}_{4}=20 \%, \mathrm{NH}_{4} \mathrm{HSO}_{4}=45 \%, \mathrm{H}_{2} \mathrm{O}=30 \%$, and organic compounds $=5 \%$.
Find the total acid content of the spent acid in terms of $\mathrm{H}_{2} \mathrm{SO}_{4}$ after adding the acid content chemically bound in ammonium hydrogen sulphate.

OR

2. a) A sample of a gas having volume of $0.5 \mathrm{~m}^{3}$ is compressed in such a manner so that pressure is increased by 60%. The operation is done for a fixed mass of a gas at constant temperature. Calculate the final volume of the gas.
b) A gaseous mixture has the following composition by volume :
$\mathrm{CO}_{2}=8 \%, \mathrm{CO}=14 \%, \mathrm{O}_{2}=6 \%, \mathrm{H}_{2} \mathrm{O}=5 \%, \mathrm{CH}_{4}=1 \%$ and $\mathrm{N}_{2}=66 \%$,
Calculate
i) Average molecular weight of gas mixture.
ii) Density of gas mixture at 303 K and 101.325 kPa .
3. The waste acid from a nitrating process containing $20 \% \mathrm{HNO}_{3}, 55 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ and $25 \% \mathrm{H}_{2} \mathrm{O}$ by weight is to be concentrated by addition of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ acid containing $95 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ and conc. HNO_{3} acid containing $90 \% \mathrm{HNO}_{3}$ to get desired mixed acid containing $26 \% \mathrm{HNO}_{3}$ and $60 \% \mathrm{H}_{2} \mathrm{SO}_{4}$. Calculate the quantities of waste and concentrated acids required for 1000 kg of desired mixed acid.

OR

4. a) The ground nut seeds containing 45% oil and 45% solids are fed to expeller the cake coming out of expeller is found to contain 80% solids and 5% oil. Find the percentage recovery of oil.
 toluene. The analysis of the distillate shows 52 weight $\%$ benzene and 5 weight $\%$ benzene was found in the bottom product. Calculate the amount of distillate and bottom product per 1000 kg of feed per hour. Also calculate the \% recovery of benzene.
5. In production of chlorine gas by oxidation of hydrochloric acid gas, air is used 30% in excess of that theoretically required. Based on 4 Kmol HCl , calculate
i) the weight ratio of air to hydrochloric acid gas in feed.
ii) If oxidation is 80% complete, find the composition of product stream on mole basis.

OR

6. Ethylene oxide is prepared by oxidation of ethylene. 100 K mole of ethylene and 100 K mole of O_{2} are charged to a reactor.
The percent conversion of ethylene is 85 and percent yield of $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$ is 94.12.
Calculate the composition of product stream leaving the reactor. The reaction taking place are :

$$
\begin{aligned}
& \mathrm{C}_{2} \mathrm{H}_{4}+\frac{1}{2} \mathrm{O}_{2} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O} \\
& \mathrm{C}_{2} \mathrm{H}_{4}+3 \mathrm{O}_{2} \longrightarrow 2 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

SECTION - B

7. The gas having the following composition is at temperature of 775 K :
$\mathrm{SO}_{2}=7.09 \%, \mathrm{O}_{2}=10.55 \%, \mathrm{SO}_{3}=0.45 \%$ and $\mathrm{N}_{2}=81.91 \%$.
Calculate the heat content of 1 Kmol gas mixture over 298 K using the heat capacity data given below: $\mathrm{C}_{\mathrm{P}}^{0}=\mathrm{a}+\mathrm{bT}+\mathrm{cT}^{2}+\mathrm{dT}^{3} \mathrm{~kJ} /(\mathrm{Kmol} . \mathrm{K})$

Gas	a	$\mathrm{b} \times 10^{3}$	$\mathrm{c} \times 10^{6}$	$\mathrm{~d} \times 10^{9}$
SO_{2}	24.7706	62.9481	-44.2582	11.122
O_{2}	26.0257	11.7551	-2.3426	-0.5623
SO_{3}	22.0376	121.624	-91.8673	24.3691
$\mathrm{~N}_{2}$	29.5909	-5.141	13.1829	-4.968

OR

8. a) A stream flowing at a rate of $15000 \mathrm{~mol} / \mathrm{hr}$ containing $25 \mathrm{~mole} \% \mathrm{~N}_{2}$ and $75 \mathrm{~mole} \% \mathrm{H}_{2}$ is to be heated from 298 K to 473 K . Calculate the heat that must be transferred using $\mathrm{C}_{\mathrm{P}}^{0}$ data given below :
$\mathrm{C}_{\mathrm{P}}^{\mathrm{o}}=\mathrm{a}+\mathrm{bT}+\mathrm{cT}^{2}+\mathrm{dT}^{3} \mathrm{~kJ} /(\mathrm{K}$ mol. K$)$

Gas	a	$b \times 10^{3}$	$c \times 10^{6}$	$d \times 10^{9}$
$\mathrm{~N}_{2}$	29.5909	-5.41	13.1829	-4.968
H_{2}	28.6105	1.0194	-0.1476	0.769

FirstRanker.com
Firstranker's choice
b) In a liquid phase heating systWWWiFitestRankeruseams a thermiwnwherirst Rankerfarm
enters an indirect fired heater at a temperature of 453 K and leaves the heater at a temperature of 533 K . Calculate the heat to be supplied in the heater per kg of the liquid heated.
Data : The heat capacity of the fluid is given by
$\mathrm{C}=1.436+2.18 \times 10^{-3} \mathrm{~T} \mathrm{~kJ} /(\mathrm{kg} . \mathrm{K})$ where T is in K .
9. Obtain an empirical equation for calculating the heat of reaction at any temperature T in K for the reaction: $\mathrm{CO}_{(\mathrm{g})}+2 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CH}_{3} \mathrm{OH}_{(\mathrm{g})}$
Data: $\Delta \mathrm{H}_{\mathrm{R}}^{\mathrm{o}}=-90.41 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{C}_{\mathrm{P}}^{\mathrm{o}}=\mathrm{a}+\mathrm{bT}+\mathrm{cT}^{2}+\mathrm{dT}^{3} \mathrm{~kJ} /(\mathrm{Kmol} \mathrm{K})$

Component	a	$\mathrm{b} \times 10^{3}$	$\mathrm{c} \times 10^{6}$	$\mathrm{~d} \times 10^{9}$
$\mathrm{CO}_{(\mathrm{g})}$	29.0277	-2.8165	11.6437	-4.7063
$\mathrm{H}_{2(\mathrm{~g})}$	28.6105	1.0194	-0.1476	0.769
$\mathrm{CH}_{3} \mathrm{OH}_{(\mathrm{g})}$	21.137	70.843	25.86	-28.497
OR				

10. a) Discuss in brief the concept of adiabatic process and adiabatic flame temperature.
b) Calculate the standard heat of reaction of the following reaction :

$$
\mathrm{C}_{5} \mathrm{H}_{12(\ell)}+8 \mathrm{O}_{2(\mathrm{~g})} \longrightarrow 5 \mathrm{CO}_{2(\mathrm{~g})}+6 \mathrm{H}_{2} \mathrm{O}_{(\ell)}
$$

Data:

Component	$\Delta \mathrm{H}_{\mathrm{f}}^{\mathrm{o}} \mathrm{kJ} / \mathrm{mol}$ at 298 K
$\mathrm{C}_{5} \mathrm{H}_{12(\ell)}$	-173.49
$\mathrm{CO}_{2(\mathrm{~g})}$	-393.51
$\mathrm{H}_{2} \mathrm{O}(\ell)$	-285.83

11. The ultimate analysis of a residual fuel oil sample is given below :
$\mathrm{C}=88.4 \%, \mathrm{H}=9.4 \%$ and $\mathrm{S}=2.2 \%$ by weight. It is used as a fuel in a power generating boiler with 25% excess air. Calculate :
a) The theoretical dry air requirement
b) The actual dry air supplied and
c) The orsat analysis of flue gases.

OR

12. a) What do you mean by calorific value ? Discuss in brief the concept of Net Calorific Value (NCV) and Gross Calorific Value (GCV).
b) A sample of fuel oil has C / H ratio 9.33 (by weight) and contains 1.3% sulphur (weight basis). The net calorific value of the fuel oil is $39685 \mathrm{~kJ} / \mathrm{kg}$ at 298 K . Calculate the gross calorific value using latent heat of water at 298 K .
Data : Latent heat of water vapour at $298 \mathrm{~K}=2442.5 \mathrm{~kJ} / \mathrm{kg}$.
