

www.FirstRanker.com

www.FirstRanker.com

B.Tech. Third Semester (Chemical Engineering) (CGS) 10987 : Process Calculations : 3 CH 05 / 3 PP 05 / 3 CT 05

P. Pages: 3

Time : Three Hours

AW - 2998

7

7

Max. Marks: 80

- Notes: 1. All question carry marks as indicated.
 - 2. Answer three question from Section A and three question from Section B.
 - 3. Due credit will be given to neatness and adequate dimensions.
 - 4. Assume suitable data wherever necessary.
 - 5. Diagrams and chemical equations should be given wherever necessary.
 - 6. Illustrate your answer necessary with the help of neat sketches.
 - 7. Discuss the reaction, mechanism wherever necessary.
 - 8. Use of cell phone is not allowed in the exam.
 - 9. Use of pen Blue/Black ink/refill only for writing the answer book.

SECTION - A

- 1. a) A chemist is interested in preparing 500 ml of 1 normal, 1 molar and 1 molal solution of $7 H_2SO_4$. Assuming the density of H_2SO_4 Solution to be 1.075 g/cm³, calculate the quantities of H_2SO_4 to be taken to prepare these solutions.
 - b) Spent acid from fertilizer plant has the following composition by weight : $H_2SO_4 = 20\%$, $NH_4HSO_4 = 45\%$, $H_2O = 30\%$, and organic compounds = 5%. Find the total acid content of the spent acid in terms of H_2SO_4 after adding the acid content chemically bound in ammonium hydrogen sulphate.

OR

- a) A sample of a gas having volume of 0.5 m³ is compressed in such a manner so that pressure 7 is increased by 60%. The operation is done for a fixed mass of a gas at constant temperature. Calculate the final volume of the gas.
 - b) A gaseous mixture has the following composition by volume : $CO_2 = 8\%$, CO = 14%, $O_2 = 6\%$, $H_2O = 5\%$, $CH_4 = 1\%$ and $N_2 = 66\%$, Calculate
 - i) Average molecular weight of gas mixture.
 - ii) Density of gas mixture at 303 K and 101.325 kPa.
- The waste acid from a nitrating process containing 20% HNO₃, 55% H₂SO₄ and 25% H₂O
 by weight is to be concentrated by addition of conc. H₂SO₄ acid containing 95% H₂SO₄ and conc. HNO₃ acid containing 90% HNO₃ to get desired mixed acid containing 26% HNO₃ and 60% H₂SO₄. Calculate the quantities of waste and concentrated acids required for 1000 kg of desired mixed acid.

OR

4. a) The ground nut seeds containing 45% oil and 45% solids are fed to expeller the cake coming 7 out of expeller is found to contain 80% solids and 5% oil. Find the percentage recovery of oil.

AW - 2998

FirstRanker.com

- b) A feed to a continuous fractionating column analyses by weight 28% benzene and 72% toluene. The analysis of the distillate shows 52 weight % benzene and 5 weight % benzene was found in the bottom product. Calculate the amount of distillate and bottom product per 1000 kg of feed per hour. Also calculate the % recovery of benzene.
- 5. In production of chlorine gas by exidation of hydrochloric acid gas, air is used 30% in 13 excess of that theoretically required. Based on 4 Kmol HCl, calculate
 - i) the weight ratio of air to hydrochloric acid gas in feed.
 - ii) If oxidation is 80% complete, find the composition of product stream on mole basis.

OR

Ethylene oxide is prepared by oxidation of ethylene. 100K mole of ethylene and 100K mole 13 of O₂ are charged to a reactor.

The percent conversion of ethylene is 85 and percent yield of C_2H_4O is 94.12. Calculate the composition of product stream leaving the reactor. The reaction taking place are :

$$C_2H_4 + \frac{1}{2}O_2 \longrightarrow C_2H_4O$$

$$C_2H_4 + 3O_2 \longrightarrow 2CO_2 + 2H_2O$$

SECTION - B

The gas having the following composition is at temperature of 775 K : $SO_2 = 7.09\%$, $O_2 = 10.55\%$, $SO_3 = 0.45\%$ and $N_2 = 81.91\%$.

Calculate the heat content of 1 Kmol gas mixture over 298K using the heat capacity data given below : $C_P^o = a + bT + cT^2 + dT^3 kJ/(Kmol.K)$

Gas	а	b×10 ³	c×10 ⁶	d×10 ⁹
SO_2	24.7706	62.9481	-44.2582	11.122
O ₂	26.0257	11.7551	-2.3426	-0.5623
SO ₃	22.0376	121.624	-91.8673	24.3691
N ₂	29.5909	-5.141	13.1829	-4.968

OR

8. a) A stream flowing at a rate of 15000 mol/hr containing 25 mole % N₂ and 75 mole % H₂ is 8 to be heated from 298 K to 473 K. Calculate the heat that must be transferred using C^o_P data given below :

 $C_{\mathbf{P}}^{\mathbf{o}} = \mathbf{a} + \mathbf{b}T + \mathbf{c}T^{2} + \mathbf{d}T^{3} \text{ kJ} / (K \text{ mol. } K)$

Gas	а	$b \times 10^3$	c×10 ⁶	d×10 ⁹
N ₂	29.5909	-5.41	13.1829	-4.968
H ₂	28.6105	1.0194	-0.1476	0.769

7.

14

6

FirstRanker.com

In a liquid phase heating system, wifitest Ranker Games a thermie www.First Ranker Game 6 enters an indirect fired heater at a temperature of 453 K and leaves the heater at a temperature of 533 K. Calculate the heat to be supplied in the heater per kg of the liquid heated.

Data : The heat capacity of the fluid is given by

 $C = 1.436 + 2.18 \times 10^{-3} \text{ T kJ} / (\text{kg.K})$ where T is in K.

9. Obtain an empirical equation for calculating the heat of reaction at any temperature T in K 13

for the reaction : $CO_{(g)} + 2H_{2(g)} \longrightarrow CH_3OH_{(g)}$

Data : $\Delta H_R^o = -90.41 \text{ kJ/mol}$

 $C_P^o = a + bT + cT^2 + dT^3 kJ / (Kmol.K)$

Component	а	b×10 ³	c×10 ⁶	d×10 ⁹
CO _(g)	29.0277	-2.8165	11.6437	-4.7063
H _{2(g)}	28.6105	1.0194	-0.1476	0.769
CH ₃ OH _(g)	21.137	70.843	25.86	-28.497
	1	L	OR	

- 10. a) Discuss in brief the concept of adiabatic process and adiabatic flame temperature.
 - b) Calculate the standard heat of reaction of the following reaction :

 $C_5H_{12(\ell)} + 8O_{2(g)} \longrightarrow 5CO_{2(g)} + 6H_2O_{(\ell)}$

Data :

Component	ΔH_{f}^{o} kJ/mol at 298 K
$C_5H_{12(l)}$	-173.49
CO _{2(g)}	-393.51
$H_2O_{(l)}$	-285.83

11.

The ultimate analysis of a residual fuel oil sample is given below :

C = 88.4%, H = 9.4% and S = 2.2% by weight. It is used as a fuel in a power generating boiler with 25% excess air. Calculate :

13

- a) The theoretical dry air requirement
- b) The actual dry air supplied and
- c) The orsat analysis of flue gases.

OR

- a) What do you mean by calorific value ? Discuss in brief the concept of Net Calorific Value 4 (NCV) and Gross Calorific Value (GCV).
 - b) A sample of fuel oil has C/H ratio 9.33 (by weight) and contains 1.3% sulphur (weight 9 basis). The net calorific value of the fuel oil is 39685 kJ/kg at 298 K. Calculate the gross calorific value using latent heat of water at 298 K. Data : Latent heat of water vapour at 298 K = 2442.5 kJ/kg.