Firstranker's choice
B. Tech. Fourth Semwew(Eirsthankergeforing) (COSyw.FirstRanker.com

10992 : Chemical Engineering Thermodynamics-II : 4 CH 02
P. Pages: 3

AW - 3066
Time : Three Hours
$\star 0662^{\star}$
Max. Marks : 80
Notes: 1. Answer three question from Section A and three question from Section B.
2. Due credit will be given to neatness and adequate dimensions.
3. Assume suitable data wherever necessary.
4. Diagrams and chemical equations should be given wherever necessary.
5. Illustrate your answer necessary with the help of neat sketches.
6. Discuss the reaction, mechanism wherever necessary.
7. Mobile phones are strictly prohibited.
8. Use of pen Blue/Black ink/refill only for writing the answer book.

SECTION - A

1. a) An ideal gas (1mole) is allowed to expand in a single step from an initial pressure of 10 atm and at 300 to a final state of 1 atm and 300 K . The gas is compressed in a single step to bring it to the initial state. Calculate $\mathrm{W}_{\text {exp }}$ and $\mathrm{W}_{\text {comp }} \&$ interpret the result.
b) Define coefficient of thermal expansion (α) \& compressibility (β). Derive the relation bet ${ }^{\mathrm{n}}$ the $\alpha \& \beta$.

OR

2. a) An ideal gas $\left(\mathrm{C}_{\mathrm{pm}}=29.1 \mathrm{Jk}^{-1} \mathrm{~mol}^{-1}\right)$ is expanded reversibly and adiabatically from a volume of $1.43 \mathrm{dm}^{3}$ at a pressure of $303975 \mathrm{P}_{\mathrm{a}}$ and temp. 298 K , until the volume is $2.86 \mathrm{dm}^{3}$. Calculate
i) The final temp \& pressure of the gas
ii) $\mathrm{q}, \mathrm{w}, \Delta \mathrm{E} \& \Delta \mathrm{H}$ for the process.
b) Prove that Isothermal reversible work of expansion is always greater in magnitude than that of irreversible expansion of on ideal gas.
3. a) Derive the expression for Gibbs-Duhem Margules equation and explain its application in detail.

OR

4. a) 100 g of ethanol \& methanol are mixed at $20^{\circ} \mathrm{C}$ to prepare an ideal mixture the vapour pressure of the pure methanol is 88.7 mm and that of ethanol is 44.5 mm at $20^{\circ} \mathrm{C}$. Calculate
i) The vapour pressure of solution
ii) The partial vapour pressure of ethanol \& methanol in solution
iii) The vapour phase composition.
b) Calculate the enthalpy, entropy and free-energy of mixing of one mole toluene and two moles of benzene at $25^{\circ} \mathrm{C}$.
c) Calculate the fugacity of amw.FirstRanker.com ${ }^{2}$, wiven whw FirstRanker.com equation of state $\mathrm{P}\left(\mathrm{V}_{\mathrm{m}}-\mathrm{b}\right)=\mathrm{RT}$, and $\mathrm{b}=0.037 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$.
5. a) Two g of cytochrome $\left(\mathrm{M}_{2}=12400\right)$ is dissolved in 100 g of water at $25^{\circ} \mathrm{C}$. Calculate the freezing point depression, boiling point elevation, lowering of vapour pressure and osmotic pressure of the solution at $25^{\circ} \mathrm{C} .\left(\mathrm{K}_{\mathrm{f}}=1.86, \mathrm{~K}_{\mathrm{b}}=0.52\right.$, vapour pressure of water at $25^{\circ} \mathrm{C}=24 \mathrm{~mm} \mathrm{Hg}$)
b) Calculate the osmotic pressure of an aqueous solution containg 2 g of protein $\left(\mathrm{M}_{2}=69000 \mathrm{~g} \mathrm{~mol}^{-1}\right)$ per 100 ml at $27^{\circ} \mathrm{C}$
i) in centimeters of mercury
ii) in centimeters of water
(Take density of solution $=1 \mathrm{~g} / \mathrm{cm}^{3}$ and $1 \mathrm{~atm}=1013250$ dync cm$^{-2}$)

OR

6. a) Prove that the Freezing point depression is an colligative properties.
b) Calculate the mass of methyl alcohol which when dissolved in 100 g of water, would just prevent the formation of ice at $-10^{\circ} \mathrm{C},\left(\mathrm{k}_{\mathrm{f}}\right.$ of water is $\left.1.86 \mathrm{~K} \mathrm{molal}^{-1}\right)$

SECTION - B

7. a) State the Gibbs-phase rule and explain the meaning of the terms and symbol used.
b) Derive the conditions of thermal, mechanical and chemical equilibria for a two-phase system.

OR

8. a) Construct a phase diagram for water showing the three phases.
b) Explain in detail the term critical solution temperature (CST) \& state the effect of impurity of CST.
9. a) Define the term statical thermodynamic \& explain the quantum mechanical aspect of thermodynamics in detail.
b) What is the probability that 2 moles of water originally at $50^{\circ} \mathrm{C}$ will spontaneously separate into 1 mole water at $49^{\circ} \mathrm{C}$ \& 1 mole water at $51^{\circ} \mathrm{C}\left(\mathrm{C}_{\mathrm{pm}}=75 \mathrm{Jk}^{-1} \mathrm{~mol}^{-1}\right)$.

OR

10. a) Explain and illustrate the following terms:
i) Assembly
ii) Ensemble
iii) Configuration
iv) Probability
b) Define thermodynamic probability \& derive the expression for thermodynamic probability.

Firstranker's choice
 that all ten molecules will be found simultaneously in one half of the container?
11. a) Derive the expression for chemical affinity $\left(\mathrm{A}_{\mathrm{f}}\right)$ and explain how it is useful to decide the 7 feasibility of the chemical reaction.
b) The equilibrium constant for the reaction $\mathrm{A} \rightleftharpoons \mathrm{M}$ is 0.10 at 300 K calculate
a) ΔG and
b) $\Delta \mathrm{G}^{\circ}$ for the production of 1 mole of M at a pressure of 1 atm from A at a pressure of 20 atm .
c) Predict the nature of the reaction under the latter conditions.

OR

12. a) For the reaction represented by $\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{SO}_{3}(\mathrm{~g}), \mathrm{k}_{\mathrm{p}}=1.7 \times 10^{12}$ at 300 K . Calculate k_{p} for the following reactions at 300 K .
i) $\mathrm{SO}_{3}(\mathrm{~g}) \rightarrow \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{~g})$
ii) $\quad 2 \mathrm{SO}_{3}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
iii) $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$
b) $\quad 3.176 \mathrm{~g}$ of $\mathrm{N}_{2} \mathrm{O}_{4}$ when take in a 1 lit vessel at $25^{\circ} \mathrm{C}$ gives a total pressure of 760 torr on dissociation. Calculate the degree of dissociation α, and equilibrium constant k_{p}. What would be the value of α, if the total pressure is only 0.5 atm ?
