

B.Tech. Fifth Semester (CHE. Tech. (Food, P & P, O & P and Petro.) (CGS)

11027 : Chemical Engineering Thermodynamics - II : 5 CT 03

P. Pages: 2 Time: Three Hours

AW - 3157

7

7

7

7

7

6

7

6

Max. Marks: 80

N	otes :	1.	Answer Three question from Section "A" and three question from Section "B".
		-	

- 2. Due credit will be given to neatness and adequate dimensions.
- 3. Assume suitable data wherever necessary.
- 4. Diagram and Chemicals equations should be given wherever necessary.
- 5. Illustrate your answer necessary with the help of neat sketches.
- 6. Use of pen Blue/Black ink/refill only for writing the answer book.

SECTION - A

- 1. a) Define entropy, enthalpy and internal energy of a system. How much is the entropy change for a reversible process and irreversible process?
 - b) Explain the types of thermodynamic systems and thermodynamic processes with suitable 7 examples.

OR

- 2. a) State and explain first law of thermodynamics and extensive and intensive properties of a system.
 - b) What do you mean by thermodynamic equilibrium? In a certain process, 350 Joules of heat is absorbed by a system, while 95 Joules of external work is done on the system. What is the change in internal energy of the process?
- 3. a) How is second law of thermodynamics stated by Clausius and Ludwig Boltzmann and how to evaluate performance of a heat engine?
 - b) State and explain Maxwell relations. One mole of a gas $(C_V = 12.55 \text{ J} / \text{mol } k)$ at 300°C is compressed adiabatically and reversibly to one fourth of its original volume. What will be the final temperature of gas. R = 8.314.

OR

- 4. a) Explain the concept of free energy and residual entropy of a system with some example.
 - b) Explain coefficient of thermal expansion and the relationship between C_P and C_V . 3 moles of hydrogen gas is compressed isothermally and reversibly from 60 dm³ to 20 dm³ and 8.22 kJ of work is done on it. What will be the temperature of gas? R = 8.314
- 5. a) Explain Gibbs Duhem equation and solubility law.
 - b) What are excess thermodynamic properties.

Ĭ		Fir	stRanker.com	
6	. F	a)	Explain the term fugacity and chemical potential of a system. www.FirstRanker.com	7
		b)	What are partial molar and apparent molar properties?	6
			SECTION - B	
7		a)	How to compare ideal and non-ideal systems? Also explain the construction of x-y diagram.	7
		b)	How to construct an equilateral triangle diagram? Explain with suitable example.	6
			OR	
8	i.	a)	What is phase rule? Explain the meaning of each term involved in phase rule.	7
		b)	Explain Rault's law and Henry's law with suitable example.	6
9		a)	What do you understand by partition function and how is it related with thermodynamic functions?	7
		b)	Derive Boltzmann distribution law and explain its application.	6
			OR	
1	0.	a)	Discuss thermodynamic probability and its relation with entropy.	7
		b)	Explain the techniques to search thermodynamic data of a system.	6
1	1.	a)	Explain various representations of equilibrium constant and the significance of free energy change.	7
		b)	15 moles of H_2 and 5.2 moles of I_2 are mixed and allowed to attain equilibrium at 500°C. At equilibrium, the concentration of HI is found to be 10 mol. Calculate the equilibrium constant for the formation of HI.	7
			OR	
1	2.	a)	Explain the effect of temperature on equilibrium constant.	7

b) 1.6 moles of PCI₅ (g) is placed in 4 dm³ closed vessel. When the temperature is raised to 7
500° K, it decomposes as: PCI₅ ⇒ PCI₃ + CI₂
At equilibrium 1.2 moles of PCI₅ remains.
Calculate the value of equilibrium constant for the decomposition of PCI₅.
