

www.FirstRanker.com

www.FirstRanker.com

B.Tech. Sixth Semester (Chemical Engineering) (CGS)

10165 : Computer Programming & Applications : 6 CH 03 / 6 PP 03

P. Pages: 2

AW - 3248

Time: Three Hours

places.

in in infinite in

Max. Marks: 80

10

8

13

Notes: 1.

- Answer Three question From Section "A" and Three question from Section "B".
- Due credit will be given to neatness and adequate dimensions.
- Assume suitable data wherever necessary.
- 4. Use of pen Blue/Black ink/refill only for writing the answer book.

SECTION - A

a) Solve the following equation using Runge-Kutta second order and forth order formula.

$$\frac{dy}{dx} = y - x$$
, $y(0) = 2$ Find y (0.1) & y (0.2) correct to four decimal places with $h = 0.1$

Given dy/dx = 1 + xy.
 y (0) = 1, obtain the Taylor series for y (x) and compute y (0.1) correct to four decimal

ΛD

- Solve $\frac{dy}{dx} = x^2y$ using Euler's predictor corrector method with the initial condition
 - y (0) =1, find y (0.5) using a step size of h = 0.1
 Derive Euler's predictor and corrector formula Also give difference between them.
- a) Solve the following set of three linear equation in three variables using the Guasselimination method.

$$3x_1 + x_2 - 2x_3 = 9$$

 $-x_1 + 4x_2 - 3x_3 = -8$
 $x_1 - x_2 + 4x_3 = 1$

b) Find the inverse of the matrix

 $A = \begin{bmatrix} 1 & -1 & 1 \\ 1 & -2 & 4 \\ 1 & 2 & 2 \end{bmatrix}$

OR

 A liquid - liquid extraction process conducted in the Electrochemical material laboratory involved the extraction of Nickel from aqueous phase into an organic phase. A set of experimental data is given bellow.

Ni - aq. Phase,
$$X(g/\ell)$$
 - 2 2.5 3

Ni - organic phase, Y (g / ℓ) - 8.57 10 12

The Quadratic interpretation that estimate Y is given by $Y = a_1x^2 + a_2x + a_3 \le x \le 3$.

The solution for constant a1, a2, a3, is given by

$$\begin{bmatrix} 4 & 2 & 1 \\ 6.25 & 2.5 & 1 \\ 9 & 3 & 1 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 8.57 \\ 10 \\ 12 \end{bmatrix}$$
 Find the value of a_1 , a_2 , a_3 , by Guass. Elimination method.

Estimate the value at Y at $x = 2.39 \text{ g}/\ell$

www.FirstRanker.com

www.FirstRanker.com

8

5

6

8

6

13

7

- a) Find the real root of the equation correct to three decimal places and between 0 and 0.5 for equation 4e^{-x} sin x -1 Using Regula Falsi method.
 - b) Compute a real root from:
 f(x) = x³ 3x 5 = 0 using the Method of False Position.

OR

- a) Use Newton Raphson method to obtain a root correct to three decimal places of following equation. sin x = 1-x
 - Use the method of false Position, to find out root of equation cos x- x e^x upto the four decimal place.

SECTION - B

- 7. a) Economize the power series for the maximum error of 0.0005, $\sin x = \cdot X - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$
 - b) What do you mean by approximation of function? Explain in detail why we need to approximate a function? Which are the methods of approximation of function.

OR

- 8. a) Find the values of a, b & c so that $y : a + bx + ex^2$ is the best fit to data x = 0 = 1 = 2 = 3 = 4
 - y 1 0 3 10 21
 - b) Estimate the criteria for the 'Best' fit for straight line.
- 9. Minimize $F(x_1, x_2) = (x_1 2)^4 + 3(x_2 + 3)^2$ by the method of steepest descent using initial solution $X^0 = (1, -2)$

OR

- 10 a) Explain
 - Analytical method of optimization
 - ii) Gradient methods of optimization
 - Explain Fibonacci search for n total number of experiment and uncertainty defined by a ≤ x ≤ b
- 11. Explain in detail:
 - Modular Programming
 - Subroutine libraries
 - Capacity optimization

OR

- a) Explain Block diagram of preliminary aids for programming.
 - b) Describe how numerical method are implemented using subroutine libraries.

a distribution in the same of
