

B.Tech. Sixth Sevenye First Ranke (France) Tech. Www. First Ranker.com

11129: Polymer Engineering Thermodynamics: 6 PP 04

P. Pages: 2 Time: Three Hours

AW - 3254

Max. Marks: 80

Notes: 1. Answer Three question from Section "A" and Three question from Section "B".

- 2. Due credit will be given to neatness and adequate dimensions.
- 3. Assume suitable data wherever necessary.
- 4. Diagrams and Chemicals equations should be given wherever necessary.
- 5. Illustrate your answer necessary with the help of neat sketches.
- 6. Use of pen Blue/Black ink/refill only for writing the answer book.

SECTION - A

1. Prove that

- i) Cp Cv = nR for an ideal gas.
- ii) Joule Thomson expansion is an isenthalpic process.
- iii) $\left(\frac{\partial H}{\partial P}\right)_T = 0$ for an ideal gas.

OR

- 2. a) Prove that the magnitude of the work done by the system in a reversible isothermal expansion of an ideal gas is greater than that of irreversible expansion.

6

8

14

- b) Explain in detail:
 - 1) State functions of properties of state function
 - 2) State of equilibrium and types of equilibrium.
- 3. Explain in detail

13

- i) Criteria for equilibria at constant. T & V
- ii) Criteria for equilibria at constant T & P.

OR

- 4. a) Explain why increase in entropy is associated with the approach to equilibrium in an isolated system.
 - b) Calculate the rate of change of transition temperature with pressure for Sulphur. The data given are transition temperature = 95.5°C at 1 atm, Enthalpy of transition per gram of Sulphur is 13.4 J. Monoclinic Sulphur (Stable above transition point) has greater specific volume than that of Rhombic Sulphur by 0.0126 cm³g⁻¹
- 5 a) Define colligative properties and show that Elevation of boiling point is a colligative property.
 - b) The boiling point elevation of a solute is observed to be 2.3 °K when 13.8 gm of solute of molar mass of 154 gm/mole. is added. Calculate Kb and Δ Hvap of the solvent.

OR

F	6.		irstRanker.com stranker's choice Explain in detail how does thwww.FirstRanker.come useful iwww.FirstRanker.com molecular weight of polymer.	6
		b)	 Calculate the free energy of mixing ΔG mix enthalpy of mixing ΔH mix, ΔS mix at 25°C and 1 atm when 10 moles of H are mixed with 10 moles of Ne 10 moles of He are mixed with 20 moles of Ne. 	7
			SECTION - B	
	7.	a)	Explain the concept of: 1) Gels of polymers 2) Colloidal dispersions of polymer.	10
		b)	Explain in detail the degree and kinetics of swelling.	4
			OR	
	8.	a)	Explain in details the factors affecting dissolution and swelling of polymers.	7
		b)	Explain the concept of polyelectrolytic solution in detail.	7
	9.	a)	Explain Flory Huggins theory and derive expression for the entropy of polymer solvent mixing.	7
		b)	Explain the thermodynamics of fusion of pure polymer.	6
			OR	
	10.	a)	Explain enthalpy or heat of mixing for polymers.	4
		b)	Explain variation of thermodynamic affinity of an polymer to a solvent with temperature criteria of upper critical solution temperature and lower critical solution temperature.	9
	11.	a)	Prove that $Kc = Kp (RT)^{\Delta x}$ for reaction equilibrium constant.	7
		b)	What is the feasibility of any chemical reaction? Develop thermodynamic expression for homogeneous reaction to calculate reaction equilibrium constant from enthalpy, entropy, heat of formation data.	6
			OR	
	12.	a)	i) At 1600 K and 1.1 atm one gram of a substance Az (gas) occupies 1.95 liters after dissociation. Calculate Kp, Kc of Kx for the reaction $\frac{1}{2}$ Az (g) \rightleftharpoons A(g)	9
			ii) Calculate Kp, Kc of Kx at 2.0 atm. (mol. col. at Az = 71)	
	s	b)	Prove thermodynamically. That in a chemical reaction an increase in temperature shifts equilibrium to the high enthalpy side.	4
