

rstranker's choice B.Tech. Eighth SwwwsFirstRankenlcomgineering)www.FjrstRanker.com

11674: Transport Phenomena: 8 CH 01

P. Pages: 2

AW - 3492

Max. Marks: 80

7

7

7

7

6

7

7

6

6

7

Notes: 1.

Time: Three Hours

- 1. Answer three question from Section A and three question from Section B.
- 2. Assume suitable data wherever necessary.
- 3. Illustrate your answer necessary with the help of neat sketches.
- Use of slide rule logarithmic tables, Steam tables, Mollier's Chart, Drawing instrument, Thermodynamic table for moist air, Psychrometric Charts and Refrigeration charts is permitted.

SECTION - A

- 1. a) The distance between two parallel plates is 9.14mm. The lower plate is being pulled at an relative velocity of 366 mm/s. The fluid held between plates is Soyabean oil of viscosity 0.04 pa's at 303 k. Calculate shear stress and shear rate. If glycerol of viscosity 1.069 kg/m.s at 203 K is used instead of Soyabean oil what relative velocity is needed to hold same shear stress?
 - b) Discuss the various types of Non-Newtonian fluids with examples.

OR

- 2. a) Calculate average velocity in terms of max. velocity for velocity profile $u_x = u_x \max \left(1 \frac{r^2}{R^2}\right).$
 - b) Derive an Expression for pressure drop for laminar flow in circular pipe.
- 3. a) Starting with Newton's second law of motion develop integral momentum balance equation for linear momentum.
 - b) A tank having inside diameter 4m & a water level of 2m is to be flow through orifice of 6cm. How long will it take to remove half the contents of the tank & to empty it completely?

OR

- 4. a) A tank containing 100kg of 60% brine is filled with 10% salt solution at the rate of 10 kg/min. Solution is removed from the tank at the rate of 15 kg/min. Assuming complete mixing. Find the Kg. of salt in the tank after 10 min.
 - b) Derive Energy equation using over all energy balance.

5. a) For incompressible fluid at steady state show that $\Delta u = 0$ or

$$\frac{\partial ux}{\partial x} + \frac{\partial uy}{\partial y} + \frac{\partial uz}{\partial z} = 0$$

b) Derive Navier - Stokes equation in rectangular co-ordinates.

OR

- 6. a) An oil having density 900 kg/m³& viscosity of 0.105 kg/m.s flows in the channel formed by the two horizontal stationary plates spaced 0.014m apart. If the avg. velocity is 1.3 m/s, determine.
 - i) The velocity profile.

P.T.O

www.FirstRanker.com

www.FirstRanker.com

- Shear stress at a distance of 0.005m from one of the plates. iii)
- Head loss in a distance of 15m along the length of plate.
- b) Explain Dimensional analysis of Navier stokes equation.

3

SECTION - B

- 7. Derive Laplace equation for heat transfer in solids, state clearly the approach you have a) 10 made.
 - Write the various cases for flow around submerged objects while dealing with chemical b) engineering operations.

4

OR

8. Derive von Karman Integral momentum equation & its applications. a)

8

Film thickness of boundary, layer is given by b)

6

$$\delta = 5\sqrt{\frac{\mu x}{u_o.p}}$$

Find the expression for drag force (FD)

9. a) Discuss in detail Enhancement factor and mass Transfer regimes.

Derive Prandtl's one by seven power law - $\frac{ux}{ux_{max}} = \left(\frac{y}{R}\right)^{1/7}$ b)

6

10. a) Derive an equation for Prandtl Taylor analogy for heat & momentum transfer.

7

b) A wet & dry bulb thermometer is kept in atmosphere if WBT is 18°C. Find DBT by Chilton-Colburn analogy

3

Given:

$$\rho_0 = 2.1 kN/m^2$$
 , $\lambda = 245 g kJ/kg$

$$\lambda = 245g \text{ kJ/kg}$$

$$c_p = 1kJ / kg.k$$

$$c_p = 1kJ / kg.k$$
 , $\rho \text{ air} = 1.2 kg / m^3$

$$pr = 0.72$$

$$SC = 0.61$$

Discuss Prandtl mixing length. c)

3

11. Derive an expression for mass flux by Danckwert's surface renewal theory & explain. a)

10

b) Explain the term Hatta number.

3

Find mass transfer coefficient by Prandtl - Taylor analogy given that Reynolds No. is 12. 1.6x104, Kinematic viscosity 15.53x10-6 m²/sec, diffusivity 7x10-6 m²/sec and velocity of flow is 10 m/s.

7

6

b) Show that Sherwood number for a solid sphere dissolving into in finite stagnant medium is 2.
