

FirstRanker.com Firstranker's choice B. Pharm. FristRanker.com Physical Pharmaceutics - II: BP 403 T

P. Pages: 3 Time: Three Hours			* 0 6 0 1 *		AW - 2350 Max. Marks : 75	
N	otes: 1.	Assume suitable da	ta wherever nece	essary. th the help of neat sketches.		
1.	MCQ)'s.			.20	
	i)	dispersions ar electrolytes.	e unstable in the	presence of even small con	centration of	
		a) Lyophilic	b)	Hydrophilic		
	67	c) Amphiphilic	d)	Lyophobic		
	!!\	The size of 1:		-CU-idal diamanaiana ia		
	ii)	-		of colloidal dispersions is	•	
		a) Less than 1 nm	b)	Greater than 5 µm		
		c) 1 nm to 0.5 µm	d)	Greater than 0.5 μm		
iii) The protective property of hydrophilic colloids is expressed in ter					ms of	
	/	a) Gold number	b)	Lyotropic series		
		c) HLB value	d)	All of the above		
iv) The ability of amphiphilic colloids to increase the solubilimaterials in solution is known as					ormally insoluble	
		a) Peptization	b)			
		c) Protection	d)	Micellar solubilization		
	v)	Ostwald's viscometer is a viscometer.				
	•)	a) Capillary	b)	Falling sphere		
	20 80	c) Cone and plate	d)	Cup and bob	60	
	vi)	Bingham bodies are -	in natur			
	VI)	a) Shear thickening		Dilatant		
10		c) Shear thinning	d)	Newtonian		
		c) Shear unning	a)	Newtonian		
	vii)	The is a dimensionless quantity.				
		a) Stress	b)	Rate of shear		
		c) Strain	d)	Elastic modulus		
	viii)	Deflocculated suspen	sions containing	high concentration of smal	l particles exhibit	

a) Newtonian

c) Pseudo-Plastic

b)

Plastic

Dilatant

ix)	The diameter of a sphere und	tRanke lergoing	r.com sedimentation at the same rate as the particle			
	under question is known as -					
020	a) Surface	b)	Volume			
	c) Projected	d)	Stoke's			
\mathbf{x}	The true density of particles can be measured by method.					
	 a) Mercury displacement 	b)	Liquid displacement			
	c) Helium penetration	d)	All of the above			
xi)	The ratio of void volume to bulk volume is known as					
*	a) Porosity	b)	Compressibility			
	c) Bulkiness	d)	Bulk density			
xii)	The theoretical porosity of powder containing uniform spheres is in the closest pack.					
	a) 26%	b)	74%			
	c) 48%	d)	52%			
xiii)	The velocity of suspended particles is inversely proportional to					
	a) Density of dispersed pha					
	b) Density of dispersion me					
	c) Radius of dispersed phase		US			
	d) Viscosity of dispersion r	nedium	w u			
xiv)	The velocity of sedimentation of dispersed particles is in flocculated suspensions than deflocculated.					
	a) Slower	b)	Faster			
	c) Same	d)	None of a, b, c			
xv)	Surfactants form film at o/w interface in an emulsion.					
	a) Protective	b)	Monomolecular			
	c) Multimolecular	d)	Particulate			
xvi)	is a reversible incompatibility observed in emulsions.					
	a) Breaking	b)	Phase inversion			
	c) Creaming	d)	Coalescence			
xvii)	The rate of order reactions is proportional to the concentration.					
	a) Zero	b)	Pseudo			
	c) First	d)	Second			
xviii)	i) The unit for rate constant of a order reaction is second ⁻¹ .					
	a) Zero	b)	Pseudo			
	c) First	d)	Second			
xix)	Classic-collision theory explains the effect of on rates of reactions.					
85%	a) pH	b)	Temperature			
	c) Catalysis	d)	Humidity			

The half-life in a zero-order reaction is described by ------

- a) $t \frac{1}{2} = \frac{A_0}{2K_0}$
- b) $t \frac{1}{2} = \frac{0.693}{K}$

c) $t \frac{1}{2} = \frac{1}{aK}$

- d) $t^{1/2} = \frac{A_0 A}{2K_0}$
- 2. Long answer questions any two.

20

- Classify the flow properties of liquids with relevant equations and rheograms. Add a note on Thixotropy.
- Describe the derived properties of powders in details.
- Define rate, order & molecularity of a reaction & derive equation for first order reaction.
- 3. Short answer Questions any seven.

35

- a) Write a note on expiration dating of pharmaceutical dosage forms.
- Describe any two methods of determination of particle size. b)
- Write in brief about equivalent spherical diameters. c)
- Give an account of optical properties of colloids. d)
- Write a note on protective colloid action. e)
- f) Discuss Bulges & spurs with relevant examples.
- Enlist the instabilities in emulsions and discuss any two in details. g)
- Write a note on sedimentation parameters. h)
- Discuss Arrhenius theory in brief. i)