B.C.A. (Part—I) Semester—II Examination 2ST5: DISCRETE MATHEMATICS

Time: Three Hours] [Maximum Marks: 60

Note:—(1) All questions carry equal marks.

- (2) All questions are compulsory.
- 1. (a) Explain the following terms:
 - (i) Parallel edges
 - (ii) Loop
 - (iii) Pendent vertex.

6

(b) Define connected and disconnected graph and give the example of graph which gets disconnected on removing one edge.

OR

- 2. (a) Define the following terms with suitable example:
 - (i) Bipartite graph
 - (ii) Null graph
 - (iii) Finite graph.

6

- (b) Explain the following with example:
 - (i) Union
 - (ii) Intersection
 - (iii) Ring sum of two graphs.

6

(a) Define edge connectivity and vertex connectivity of a graph. Also find the edge connectivity and vertex connectivity of following graph:

(b) By using Dijkstra's algorithm find shortest path from vertex a to z:

6

OR

- 4. (a) Prove that vertex connectivity here FirstRanker.com
 - (b) Explain the following terms:
 - (i) Walk
 - (ii) Path
 - (iii) Trail.
- 5. (a) Show that following graph is Eulerian and trace Eulerian circuit by using Fluery's algorithm:

(b) Find Hamiltonian path and cycle in following graph:

- 6. (a) Write the characteristics of Eulerian graph in terms of degree.
 - (b) Show that following graph is Eulerian and find Eulerian circuit:

7. (a) Find the centre and radius of following tree:

(b) Prove that a binary tree of n vertices has (n + 1)/2 pendent vertices.

6

6

6

6

OR

www.FirstRanker.com

- tranker's choice Define the following with swimble firstiffanker.com
- (i) Spanning Tree
- Fundamental Circuit
- (iii) Fundamental Cutset.
 - 6
- (b) Define binary tree and prove that binary tree has odd number of vertices.
- 9. (a) Explain the different types of directed graphs with suitable example.
 - Define the following:
 - Arborescence (i)
 - (ii) Network
 - (iii) Diagraph.

10. (a) Find the shortest spanning tree by using Kruskal's algorithm:

OR

e_s(15) (b) Prove that every connected graph has at least one spanning tree.

6

6

6

6