B.C.A. (Part-I) Semester-II Examination
 2ST5 : DISCRETE MATHEMATICS

Time : Three Hours]
[Maximum Marks : 60
Note :-(1) All questions carry equal marks.
(2) All questions are compulsory.

1. (a) Explain the following terms :
(i) Parallel edges
(ii) Loop
(iii) Pendent vertex.
(b) Define connected and disconnected graph and give the example of graph which gets disconnected on removing one edge.
2. (a) Define the following terms with suitable example :
(i) Bipartite graph
(ii) Null graph
(iii) Finite graph.
(b) Explain the following with example :
(i) Union
(ii) Intersection
(iii) Ring sum of two graphs.
3. (a) Define edge connectivity and vertex connectivity of a graph. Also find the edge connectivity and vertex connectivity of following graph :

(b) By using Dijkstra's algorithm find shortest path from vertex a to z :

OR
4. (a) Prove that vertex connectivityww Firstrankerecommectivity.
(b) Explain the following terms:
(i) Walk
(ii) Path
(iii) Trail.
5. (a) Show that following graph is Eulerian and trace Eulerian circuit by using Fluery's algorithm :

(b) Find Hamiltonian path and cycle in following graph:

6. (a) Write the characteristics of Eulerian graph in terms of degree.
(b) Show that following graph is Eulerian and find Eulerian circuit :

7. (a) Find the centre and radius of following tree :

(b) Prove that a binary tree of n vertices has $(\mathrm{n}+1) / 2$ pendent vertices.
8. (a) Define the following with swmblarssthenanker.com
(i) Spanning Tree
(ii) Fundamental Circuit
(iii) Fundamental Cutset.
(b) Define binary tree and prove that binary tree has odd number of vertices. 6
9. (a) Explain the different types of directed graphs with suitable example.
(b) Define the following:
(i) Arborescence
(ii) Network
(iii) Diagraph.

OR

10. (a) Find the shortest spanning tree by using Kruskal's algorithm :

(b) Prove that every connected graph has at least one spanning tree.
