B.Sc. Part-II (Semester-IV) Examination

MATHEMATICS

(Classical Mechanics)

Paper-VIII

Tim	e : T	hree	Hours]		[Maximum Marks:	60			
Not	e :—	(1)	Question No. 1 is compulsory and attempt it once only.						
		20000 633	Solve ONE question from each unit.						
1.	Cho	ose t	he correct alternative :						
(i) Each planet d			n planet describes having the	sun	at one of its foci.	1			
		(a)	An ellipse	(b)	A circle				
		(c)	A hyperbola	(d)	None of these				
	(ii)	If a bead is sliding along the wire then the constraint is							
		(a)	Holonomic	(b)	Non-holonomic				
* 1		(c)	Superfluous	(d)	None of these				
	(iii)	For	an inverse square law, the virial theo	rem	reduces to	1			
		(a)	$2\overline{T} = -n\overline{V}$	(b)	$2\overline{T} = n\overline{V}$				
		(c)	$2\overline{T} = \overline{V}$	(d)	$2\overline{T} = -\overline{V}$				
	(iv)	The	The virtual work on a mechanical system by the applied forces and reversed effective						
		forc	es is			1 .			
		(a)	Zero	(b)	One				
		(c)	Negative	(d)	None of these				
	(v)	The	shortest distance between two points	in a	space is	1			
		(a)	A circle	(b)	A straight line				
		(c)	An ellipse	(d)	A parabola				
	(vi)	If H	is the Hamiltonian of the system the	en a	generalized coordinate qi is said to	be			
		cycl	ic if			1			
		(a)	$\frac{\partial H}{\partial q_i} \neq 0$	(b)	$\frac{\partial H}{\partial q_i} > 0$				
		(c)	$\frac{\partial H}{\partial q_i} = 0$	(d)	$\frac{\partial H}{\partial q_i} < 0$				
	(vii)	A so	quare matrix A is said to be orthogona	al if		1			
		(a)	$A = A^{T}$	(b)	$\mathbf{A}^{T} = \mathbf{A}^{-1}$				
Santa es		(c)	$A = A^{-1}$	(d)	None of these				

(vii	The general displacement of a rigid bod	nker com	n www.FirstRanker.co	m out				
	some axis.			1				
	(a) One	(b) Tw	VO					
	(c) Three	(d) No	one of these					
(ix)	ix) The sum of the finite rotations depends on the of the rotation.							
	(a) Degree	(b) Or	rder					
	(c) Both Degree and Order	(d) No	one of these					
(x)	A particle moving in a space has	_ degrees	s of freedom.	1				
	(a) One	(b) Tv	OVO					
	(c) Three	(d) Fo	our					
	UNIT-	—I						
(a)	(a) Derive the Lagrange's equations of motion in the form:							
	$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \right) - \frac{\partial L}{\partial q_i} = 0, i = 1, 2, \dots, n.$							
	for conservative system from D'Alembert's principle.							
(b)	A bead is sliding on a uniformly rotating wire in a force-free space, then show that the							
	he angular velocity of rotation.	4						
(p)								
	passes over a small smooth fixed pulley. If $m_1 > m_2$, then show that the common							
	acceleration of the particles is $\left\{\frac{(m_1 - m_2)}{(m_1 + m_2)}\right\}^{g}$.							
(q)	Obtain the equations of motion of a simple pendulum by using D'Alembert's							
	principle.			5				
	UNIT-	-II						
(a)	For a central force field, show that Ke	econd law is a consequence of						
<i>a</i> >	conservation of angular momentum.		5					
(b)								
	vector \vec{r}_i , then the motion of a conserva		em takes place in a finite region					
	space only if the total energy is negative			5				
(p)				5				
(q)	Show that if a particle describes a circu							
	central force directed towards point on t fifth power of the distance.	ine circle,	then the force varies as the inve	erse 5				
	intil power of the distance.							

2.

3.

4.

5.

www.FirstRanker.com

www.FirstRanker.com

6. (a) Show that the functional:

$$I[y(x)] = \int_{0}^{1} \{2y(x) + y'(x)\} dx$$

defined in the space $c_1[0, 1]$ is continuous on the function $y_0(x) = x$ in the sense of first order proximity.

(b) Find the extremals of
$$I[y(x)] = \int_a^b [y^2 + y^2 + 2ye^x] dx$$
.

7. (p) Find the extremals of the functional:

$$I[y(x)] = \int_{a}^{b} [16y^{2} - y''^{2} + x^{2}]dx.$$

(q) Write down the Euler-Ostrogradsky equation for the functional:

$$I[z(x,y)] = \iint_{D} \left\{ \left(\frac{\partial z}{\partial x} \right)^{4} + \left(\frac{\partial z}{\partial y} \right)^{4} + 12zf(x,y) \right\} dx dy.$$

UNIT-IV

- 8. (a) Show that Hamilton's principle can be derived from D'Alembert's principle. 5
 - (b) Define Hamiltonian H. Derive the Hamilton's equations for the Hamiltonian H of the system.
- (p) Deduce the Hamilton's equations of motion of a particle of mass m in Cartesian coordinates (x, y, z).
 - (q) Define Routhian, prove that a cyclic coordinate will not occur in the Routhian R.

UNIT-V

- 10. (a) Prove that if A is any 2×2 orthogonal matrix with determinant |A| = 1, then A is a rotation matrix.
 - (b) Define infinitesimal rotation. Prove that infinitesimal rotations commute. 1+4
- 11. (p) Show that two complex eigenvalues of an orthogonal matrix representing a proper rotation are $e^{\pm i\phi}$, where ϕ is the angle of rotation.
 - (q) Prove that the general displacement of a rigid body with one point fixed is a rotation about some axis.

www.FirstRanker.com

www.FirstRanker.com