B.Sc. Part-II (Semester-IV) Examination
 MATHEMATICS
 (Classical Mechanics)
 Paper-VIII

Time : Three Hours]
[Maximum Marks : 60
Note :-(1) Question No. 1 is compulsory and attempt it once only.
(2) Solve ONE question from each unit.

1. Choose the correct alternative :
(i) Each planet describes \qquad having the sun at one of its foci.
(a) An ellipse
(b) A circle
(c) A hyperbola
(d) None of these
(ii) If a bead is sliding along the wire then the constraint is \qquad .
(a) Holonomic
(b) Non-holonomic
(c) Superfluous
(d) None of these
(iii) For an inverse square law, the virial theorem reduces to \qquad -
(a) $2 \overline{\mathrm{~T}}=-\mathrm{n} \overline{\mathrm{V}}$
(b) $2 \overline{\mathrm{~T}}=\mathrm{n} \overline{\mathrm{V}}$
(c) $2 \overline{\mathrm{~T}}=\overline{\mathrm{V}}$
(d) $2 \overline{\mathrm{~T}}=-\overline{\mathrm{V}}$
(iv) The virtual work on a mechanical system by the applied forces and reversed effective forces is \qquad .
(a) Zero
(b) One
(c) Negative
(d) None of these
(v) The shortest distance between two points in a space is \qquad .
(a) A circle
(b) A straight line
(c) An ellipse
(d) A parabola
(vi) If H is the Hamiltonian of the system then a generalized coordinate q_{i} is said to be cyclic if \qquad .
(a) $\frac{\partial \mathrm{H}}{\partial \mathrm{q}_{\mathrm{i}}} \neq 0$
(b) $\frac{\partial \mathrm{H}}{\partial \mathrm{q}_{\mathrm{i}}}>0$
(c) $\frac{\partial H}{\partial q_{i}}=0$
(d) $\frac{\partial \mathrm{H}}{\partial \mathrm{q}_{\mathrm{i}}}<0$
(vii) A square matrix A is said to be orthogonal if \qquad .
(a) $\mathrm{A}=\mathrm{A}^{T}$
(b) $\mathrm{A}^{\mathrm{T}}=\mathrm{A}^{-1}$
(c) $\mathrm{A}=\mathrm{A}^{-1}$
(d) None of these
(viii) The general displacement of a wigld boay with point wwed FirstRanker.com is a rotaon about some axis.
(a) One
(b) Two
(c) Three
(d) None of these
(ix) The sum of the finite rotations depends on the \qquad of the rotation.
(a) Degree
(b) Order
(c) Both Degree and Order
(d) None of these
(x) A particle roving in a space has \qquad degrees of freedom.
(a) One
(b) Two
(c) Three
(d) Four

UNIT-I

2. (a) Derive the Lagrange's equations of motion in the form :

$$
\frac{\mathrm{d}}{\mathrm{dt}}\left(\frac{\partial \mathrm{~L}}{\partial \dot{\mathrm{q}}}\right)-\frac{\partial \mathrm{L}}{\partial \mathrm{q}_{\mathrm{i}}}=0, \mathrm{i}=1,2, \ldots \ldots . ., \mathrm{n} .
$$

for conservative system from D'Alembert's principle.
(b) A bead is sliding on a uniformly rotating wire in a force-free space, then show that the acceleration of the bead is $\ddot{\mathrm{r}}=r w^{2}$, where w is the angular velocity of rotation. 4
3. (p) Two particles of masses m_{1} and m_{2} are connected by a light inextensible string which passes over a small smooth fixed pulley. If $m_{1}>m_{2}$, then show that the common acceleration of the particles is $\left\{\frac{\left(m_{1}-m_{2}\right)}{\left(m_{1}+m_{2}\right)}\right\}^{\varepsilon}$
(q) Obtain the equations of motion of a simple pendulum by using D'Alembert's principle.
UNIT-II
4. (a) For a cent al force field, show that Keplet's second law is a consequence of the conservaticn of angular momentum.
(b) Prove that f the potential energy is a homogeneous function of degree -1 in the radius vector \vec{r}_{i}, hen the motion of a conservative system takes place in a finite region of space only if the total energy is negative.
5. (p) Prove that in a central force field the areal velocity is conserved.
(q) Show that if a particle describes a circular orbit under the influence of an attractive central forse directed towards point on the circle, then the force varies as the inverse fifth power of the distance.
wWWHFirstRanker.com
6. (a) Show that the functional :

$$
\mathrm{I}[\mathrm{y}(\mathrm{x})]=\int_{0}^{1}\left\{2 \mathrm{y}(\mathrm{x})+\mathrm{y}^{\prime}(\mathrm{x})\right\} \mathrm{dx}
$$

defined in the space $c_{1}[0,1]$ is continuous on the function $y_{0}(x)=x$ in the sense of first order proximity.
(b) Find the extremals of $I[y(x)]=\int_{a}^{b}\left[y^{2}+y^{\prime 2}+2 \mathrm{ye}^{\mathrm{x}}\right] d x$.
7. (p) Find the extremals of the functional :

$$
\begin{equation*}
I[y(x)]=\int_{a}^{b}\left[16 y^{2}-y^{\prime \prime 2}+x^{2}\right] d x . \tag{5}
\end{equation*}
$$

(q) Write down the Euler-Ostrogradsky equation for the functional :

$$
\begin{equation*}
I[z(x, y)]=\iint_{D}\left\{\left(\frac{\partial z}{\partial x}\right)^{4}+\left(\frac{\partial z}{\partial y}\right)^{4}+12 z f(x, y)\right\} d x d y . \tag{5}
\end{equation*}
$$

UNIT-IV

8. (a) Show that Hamilton's principle can be derived from D'Alembert's principle. 5
(b) Define Hamiltonian H . Derive the Hamilton's equations for the Hamiltonian H of the system.
9. (p) Deduce the Hamilton's equations of motion of a particle of mass m in Cartesian coordinates ($\mathrm{x}, \mathrm{y}, \mathrm{z}$).

5
(q) Define Routhian, prove that a cyclic coordinate will not occur in the Routhian R.

UNIT-V

10. (a) Prove that if A is any 2×2 orthogonal matrix with determinant $|\mathrm{A}|=1$, then A is a rotation matrix.
(b) Define infinitesimal rotation. Prove that infinitesimal rotations commute. $1+4$
11. (p) Show that two complex eigenvalues of an orthogonal matrix representing a proper rotation are $\mathrm{e}^{\mathrm{Ei} \mathrm{\phi} \phi}$, where ϕ is the angle of rotation.

5
(q) Prove that the general displacement of a rigid body with one point fixed is a rotation about some axis.

