	FirstRanker Firstranker's choice	www.FirstRanker.com	www.FirstRankerjeon
	B.Sc.	Part-II (Semester-IV) Examina	tion
		MATHEMATICS	
		(Classical Mechanics)	
		Paper—VIII	
	e : Three Hours]	compulsory and attempt it once	[Maximum Marks : 60
1401	(2) Solve ONE quest		omy.
1.			
	(i) Each planet describes	having the sun at one of	f its foci.
	(a) An ellipse	(b) A circle	
	(c) A hyperbola	(d) None of	f these
	(ii) If a bead is sliding alo	ong the wire then the constraint	is 1
	(a) Holonomic	(b) Non-hol	
	(c) Superfluous	(d) None of	f these
	(iii) For an inverse square	law, the virial theorem reduces t	to 1
	(a) $2\overline{T} = -n\overline{V}$	(b) $2\overline{T} = n\overline{V}$	7
	(c) $2\overline{T} = \overline{V}$	(d) $2\overline{T} = -\overline{V}$	
		mechanical system by the applied	
	forces is		. 1
	(a) Zero	(b) One	
	(c) Negative	(d) None of	these
	(v) The shortest distance l	between two points in a space is	1
	(a) A circle	(b) A straig	ht line
	(c) An ellipse	(d) A parab	ola
	(vi) If H is the Hamiltonia	in of the system then a generaliz	zed coordinate q, is said to b
	cyclic if		1
	∂H ≠ 0	∂H _ 0	
	(a) $\frac{\partial H}{\partial q_i} \neq 0$	(b) $\frac{\partial H}{\partial q_i} > 0$	
	∂H o	∂H .	
	(c) $\frac{\partial H}{\partial q_i} = 0$	(d) $\frac{\partial H}{\partial q_i} < 0$	
	(vii) A square matrix A is s	said to be orthogonal if	,
	(a) $A = A^T$	(b) $A^T = A^{-1}$	· · · ·
	(c) $A = A^{-1}$		

R	Fir	The	tRanker.com nker's choice general displacement of a rigid body	(er.c	om point fixed is a rotation about	t	
		som	e axis.		1		
		(a)	One	(b)	Two		
		(c)	Three	(d)	None of these		
	(ix)	The	e sum of the finite rotations depends on the of the rotation.				
		(a)	Degree	(b)	Order		
		(c)	Both Degree and Order	(d)	None of these		
	(x) A particle moving in a space		article moving in a space has	degi	rees of freedom. 1		
		(a)	One	(b)	Two		
		(c)	Three	(d)	Four		

UNIT-I

2. (a) Derive the Lagrange's equations of motion in the form :

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}}\right) - \frac{\partial L}{\partial q_i} = 0, i = 1, 2, \dots, n.$$

for conservative system from D'Alembert's principle.

- (b) A bead is sliding on a uniformly rotating wire in a force-free space, then show that the acceleration of the bead is r = rw², where w is the angular velocity of rotation. 4
- 3. (p) Two particles of masses m₁ and m₂ are connected by a light inextensible string which passes over a small smooth fixed pulley. If m₁ > m₂, then show that the common

acceleration of the particles is
$$\left\{\frac{(m_1 - m_2)}{(m_1 + m_2)}\right\}^{E}$$
. 5

(q) Obtain the equations of motion of a simple pendulum by using D'Alembert's principle.

UNIT-II

- (a) For a central force field, show that Kepler's second law is a consequence of the conservation of angular momentum.
 - (b) Prove that f the potential energy is a homogeneous function of degree -1 in the radius vector r
 _i, hen the motion of a conservative system takes place in a finite region of space only if the total energy is negative.
- (p) Prove that in a central force field the areal velocity is conserved.
 - (q) Show that if a particle describes a circular orbit under the influence of an attractive central force directed towards point on the circle, then the force varies as the inverse fifth power of the distance.

5

6

FirstRanker.com

www.FirstRanker.com

www.FirstRanker.com

5

5

6. (a) Show that the functional :

$$I[y(x)] = \int_{0}^{1} \{2y(x) + y'(x)\} dx$$

defined in the space $c_1[0, 1]$ is continuous on the function $y_0(x) = x$ in the sense of first order proximity.

(b) Find the extremals of
$$I[y(x)] = \int_{0}^{b} [y^{2} + y'^{2} + 2ye^{x}] dx$$

7. (p) Find the extremals of the functional :

$$I[y(x)] = \int_{0}^{0} [16y^{2} - y''^{2} + x^{2}] dx.$$

(q) Write down the Euler-Ostrogradsky equation for the functional :

$$I[z(x, y)] = \iint_{D} \left\{ \left(\frac{\partial z}{\partial x} \right)^4 + \left(\frac{\partial z}{\partial y} \right)^4 + 12zf(x, y) \right\} dx dy .$$
 5

UNIT-IV

(a) Show that Hamilton's principle can be derived from D'Alembert's principle.

- (b) Define Hamiltonian H. Derive the Hamilton's equations for the Hamiltonian H of the system. 1+4
- (p) Deduce the Hamilton's equations of motion of a particle of mass m in Cartesian coordinates (x, y, z).
 - (q) Define Routhian, prove that a cyclic coordinate will not occur in the Routhian R. 1+4

UNIT-V

- (a) Prove that if A is any 2 × 2 orthogonal matrix with determinant | A | = 1, then A is a rotation matrix.
 - (b) Define infinitesimal rotation. Prove that infinitesimal rotations commute. 1+4
- (p) Show that two complex eigenvalues of an orthogonal matrix representing a proper rotation are e^{±iφ}, where φ is the angle of rotation.
 - (q) Prove that the general displacement of a rigid body with one point fixed is a rotation about some axis.

525

www.FirstRanker.com

www.FirstRanker.com

