www.FirstRanker.com

B.Sc. (Part—II) Semester—IV Examination 4S—PHYSICS

(Optics, Laser and Renewable Energy Sources)

Time: Thr	ree Hou	urs]		[Maxir	num Marks : 80				
N.B. : (1) AL	L questions are compu	lsory.						
(2	2) Dra	w neat and labelled dia	ngram wherever nec	essary.					
1. (A) F	ill in th	he blanks :							
		pagation of light through	h a fiber core depe	nds on the phenor	menon known as				
`			,						
(i	ii) The	blue colour of the sky	is due to the	of light.					
(i	iii) The	i) The central spot of Newton's ring by reflected light is							
(i	iv) In I	Ruby laser pur		2					
(B) C	hoose	correct alternative :							
. (i	i) If N	N be the number of line	es per cm, the gratin	ng element in cm	will be				
		2.54 N	10	N.					
	(a)	N	(b)	N 2.54					
	(c)	N	(d)	1 N					
	(0)		(4)	N					
(i	ii) In o	quantum optics, light is	assumed to consist	of					
	(a)	Particle or photon	(b)	Wave					
	(c)	Ray	(d)	Wave and ray					
(i	iii) The	S.I. unit of power of	radiation is						
	(a)	cal/m ²	(b)	joule					
	(c)	w/m²	(d)	watts					
(i	iv) A la	aser beam consists of .							
	(a)	Light material particle	(b)	Electrons					
	(c)	Highly coherent photo	ons (d)	Cosmic rays	2				
(C) A	Answer	in one sentence:							
(i	i) Wh	at is fiber optics?							
		at is half wave plate?							
(i	iii) Def	ine diffraction of light.							
(i	v) Wh	at is power of lens?			4				

www.FirstRanker.com

EITHER

4.	(A)	obtain an expression for path difference in reflected light from thin films. Hence obtain the conditions for bright and dark fringes.	also 6
	(B)	Explain the method to determine the wavelength of monochromatic light by Newton's rings.	using 4
	(C)	Newton's rings are observed in reflected light of wavelength 5.9×10^{-5} cm. The diar of the 10^{th} dark ring is 5 mm. Find the radius of curvature of the lens.	neter 2
	OR		
3.	(P)	What are focal points?	2
	(Q)	State cardinal points. Explain nodal points and principal points.	4
	(R)	Determine the equivalent focal length of two thin co-axial lens of focal length F_2 separated by a distance 'a'.	and 6
	EIT	THER	
4.	(A)	Deduce an expression for the resolving power of a plane transmission grating.	4
	(B)	Distinguish between Fresnel and Fraunhofer types of diffraction.	3
	(C)	Explain resolving power of optical instrument and explain Rayleigh's criteria of resolu	ution. 5
	OR		
5.	(P)	Explain the meaning of half period zones. Why are they so called ?	3
	(Q)	Give the elementary theory of plane transmission grating.	6
	(R)	Light of wavelength 6250 Å is incident normally on a plane transmission graded A second order spectral line is observed at an angle of 30°. Calculate the numb lines per cm on the grating surface.	
	EIT	THER	
6.	(A)	State and explain Brewster's law.	3
	(B)	What is quarter wave plate? Deduce the formula for its thickness.	4
	(C)	What are uniaxial and biaxial crystals? Give one example of each.	3
	(D)	What is halfshade polarimeter ?	2
	OR		
7.	(P)	Give the theory of production of elliptical and circularly polarised light.	5
	(Q)	Explain the phenomenon of double refraction.	3
	(R)	Explain how Nicol Prism can be used as a polariser.	4
	EIT	THER	
8.	(A)	Describe the construction and working of ruby laser.	5
	(B)	Explain the difference between spontaneous and stimulated emission.	3
	(C)	State the medical and industrial applications of laser.	4

www.FirstRanker.com

OR

9.	(P)	Explain how laser can be used for recording and reconstruction of an image holograms.	from 6		
	(Q)	Explain three level laser system.	4		
	(R)	What are the main characteristics of laser?	2		
	EIT	HER			
10.	(A)	Define :			
		(i) Acceptance angle			
		(ii) Critical angle.	2		
	(B)	Derive an expression for numerical aperture.	4		
	(C)	Describe fiber optic communication system with block diagram.	6		
	OR				
11.	(P)	Explain the phenomenon of total internal reflection.	3		
	(Q)	Give the advantages of optical fiber over conventional communication system.	3		
	(R)	Explain the types of optical fiber.	6		
	EIT	HER			
12.	(A)	What is renewable energy ?			
	(B)	Describe principle, construction and working of a solar cell.			
	(C)	Describe solar water heater with natural circulation system.	4		
	OR				
13.	(P)	What is fuel cell ?	2		
	(Q)	Describe any two methods to store solar energy.	4		
	(R)	Explain:			
		(i) Wind energy			
		(ii) Geothermal energy			
		(iii) Ocean energy.	6		

www.FirstRanker.com