B.Sc. (Part—II) Semester—IV Examination 4S—PHYSICS

(Optics, Laser and Renewable Energy Sources)

Time: Three		Hou	ırs]	[Max	[Maximum Marks: 80					
N.B.	· :	(1)	AL	L questions a	are compulsory	٧.				
		(2)	Dra	w neat and l	abelled diagra	m wherever	nec	essary.		
1.	(A)	Fill	in th	ne blanks :					20	
	, ,	(i)		- F	ight through a	fiber core	depe	nds on the phen	omenon kno	own as
		8.7					•	•		
		(ii)	The	blue colour	of the sky is	due to the		of light.		
		(iii)	The	central spot	of Newton's	ring by refl	ected	l light is		
		(iv)	In I	Ruby laser	pumpir	ng is used.				2
×	(B)	Cho	ose	correct altern	ative:		9			
	9	(i)	If N	I be the num	ber of lines po	er cm, the g	gratir	ng element in cm	n will be	
			(a)	2.54 N	,		(b)	N. 2.54	383	
			(c)	N			(d)	N. 2.54 1 N		×
		(ii)	In c	quantum opti	cs, light is ass	umed to co	nsist	of		
			(a)	Particle or	photon		(b)	Wave		
			(c)	Ray	v.		(d)	Wave and ray		
		(iii)	The	S.I. unit of	power of radi	ation is				
			(a)	cal/m^2			(b)	joule		
			(c)	w/m^2			(d)	watts		
		(iv)	A la	aser beam co	nsists of					
			(a)	Light mater	ial particles		(b)	Electrons		
			(c)	Highly cohe	erent photons		(d)	Cosmic rays		2
	(C)	Ans	wer	in one senter	nce:					
		(i)	Wha	at is fiber op	tics ?					
		(ii)	Wha	at is half war	ve plate?					
				ine diffractio	100 Car					
		(iv)	Wha	at is power o	f lens?					4

www.FirstRanker.com

www.FirstRanker.com

EITHER

2.	(A)	Obtain an expression for path difference in reflected light from thin films. Hence obtain the conditions for bright and dark fringes.	also 6
	(B)	Explain the method to determine the wavelength of monochromatic light by u Newton's rings.	sing 4
	(C)	Newton's rings are observed in reflected light of wavelength 5.9×10^{-5} cm. The diam of the 10^{th} dark ring is 5 mm. Find the radius of curvature of the lens.	ieter 2
	OR		
3.	(P)	What are focal points?	2
	(Q)	State cardinal points. Explain nodal points and principal points.	4
	(R)	Determine the equivalent focal length of two thin co-axial lens of focal length F_1 , F_2 separated by a distance 'a'.	and 6
	EIT	THER	
4.	(A)	Deduce an expression for the resolving power of a plane transmission grating.	4
	(B)	Distinguish between Fresnel and Fraunhofer types of diffraction.	3
	(C)	Explain resolving power of optical instrument and explain Rayleigh's criteria of resolu-	tion. 5
	OR		
5.	(P)	Explain the meaning of half period zones. Why are they so called?	3
	(Q)	Give the elementary theory of plane transmission grating.	6
	(R)	Light of wavelength 6250 Å is incident normally on a plane transmission graded A second order spectral line is observed at an angle of 30°. Calculate the number lines per cm on the grating surface.	10.75
	EIT	THER	
6.	(A)	State and explain Brewster's law.	3
	(B)	What is quarter wave plate? Deduce the formula for its thickness.	4
	(C)	What are uniaxial and biaxial crystals? Give one example of each.	3
	(D)	What is halfshade polarimeter?	2
	OR		
7.	(P)	Give the theory of production of elliptical and circularly polarised light.	5
	(Q)	Explain the phenomenon of double refraction.	3
	(R)	Explain how Nicol Prism can be used as a polariser.	4
	EIT	THER	
8.	(Λ)	Describe the construction and working of ruby laser.	5
	(B)	Explain the difference between spontaneous and stimulated emission.	3
	(C)	State the medical and industrial applications of laser.	4

www.FirstRanker.com

www.FirstRanker.com

OR

9.	(P)	Explain how laser can be used for recording and reconstruction of an image holograms.	from 6					
	(Q)	Explain three level laser system.	4					
	(R)	What are the main characteristics of laser?	2					
	EIT	HER						
10.	(A)	Define:						
		(i) Acceptance angle						
		(ii) Critical angle.	2					
	(B)	Derive an expression for numerical aperture.	4					
	(C)	Describe fiber optic communication system with block diagram.	6					
	OR							
11.	(P)	Explain the phenomenon of total internal reflection.	3					
	(Q)	Give the advantages of optical fiber over conventional communication system.	3					
	(R)	Explain the types of optical fiber.	6					
	EIT	HER						
12.	(A)	What is renewable energy?	2					
	(B) Describe principle, construction and working of a solar cell.		6					
	(C)	Describe solar water heater with natural circulation system.	4					
	OR		31					
13.	(P)	What is fuel cell?	2					
	(Q)	Describe any two methods to store solar energy.	4					
	(R)	Explain:						
		(i) Wind energy						
		(ii) Geothermal energy						
		(iii) Ocean energy.	6					

www.FirstRanker.com

www.FirstRanker.com