B.Sc. (Part-III) Semester-V Examination MATHEMATICS (New)
 (Mathematical Analysis)
 Paper-IX

Time : Three Hours]
[Maximum Marks : 60
N.B. :- (1) Question No. 1 is compulsory. Attempt once.
(2) Attempt ONE question from each Unit.

1. Choose the correct alternatives :
(i) Let $\mathrm{f}:[0,1] \rightarrow \mathrm{R}$ be Riemann integrable. Which of the following is always true :
(a) f is continuous
(b) f is monotone
(c) f has only finite number of discontinuities
(d) the set of discontinuties of f may be infinite?
(ii) An improper integral $\int_{a}^{\infty} \frac{d x}{x^{p}}, a \in R$ is convergent if :
(a) $\mathrm{p}<1$
(b) $\mathrm{p}>1$
(c) $\mathrm{p} \geq 1$
(d) $\mathrm{p}=1$

1
(iii) $\beta(\mathrm{m}, \mathrm{n})$ is :
(a) $\sqrt{\mathrm{m}} \sqrt{\mathrm{n}}$
(b) $\frac{\sqrt{(\mathrm{m}+\mathrm{n})}}{\sqrt{\mathrm{m}} / \mathrm{n}}$
(c) $\frac{\sqrt{\mathrm{m}} \sqrt{\mathrm{n}}}{\sqrt{(\mathrm{m}+\mathrm{n})}}$
(d) $\frac{\sqrt{\mathrm{m}} \sqrt{\mathrm{n}}}{\sqrt{(\mathrm{m}-\mathrm{n})}}$
(iv) In the real line R, which of the following is true?
(a) Every bounded sequence converges
(b) Every sequence converges
(c) Every Cauchy sequence converges
(d) None of the above
(v) Every neighbourhood is a/an:
(a) Closed set
(b) Open set
(c) Open closed set
(d) None of the above
(vi) A function $\mathrm{u}(\mathrm{x}, \mathrm{y})$ is harmonic in region D if:
(a) $u_{x x}-u_{y y}=0$
(b) $u_{x y}+u_{y x}=0$
(c) $\mathrm{u}_{\mathrm{xy}}-\mathrm{u}_{\mathrm{yx}}=0$
(d) $\mathrm{u}_{\mathrm{xx}}+\mathrm{u}_{\mathrm{yy}}=0$
(a) Harmonic function
(b) Analytic function
(c) Conjugate function
(d) Not analytic f inction
(viii) If $\mathrm{f}(\mathrm{z})$ and $\overline{\mathrm{f}(\mathrm{z})}$ are both analytic functions then $\mathrm{f}(\mathrm{z})$ is :
(a) Identically zero
(b) Constant
(c) Unbounded
(d) None of the above
(ix) The points z where $\left|\mathrm{e}^{\mathrm{z}}\right|=10$ form a:
(a) Circle
(b) Straight line
(c) Hyperbola
(d) Parabola
(x) A bilinear transformation with two non-infinite fixed points α and β having Normal form $\frac{w-\alpha}{w-\beta}=k\left(\frac{z-\alpha}{z-\beta}\right)$ is Elliptic if :
(a) $|\mathrm{k}| \neq 1, \mathrm{k}$ is real
(b) $\mathrm{k} \neq 1, \mathrm{k}$ is not real
(c) $|\mathrm{k}|=1$
(d) None of the above

UNIT-I

2. (a) Prove that every continuous function is integrable.
(b) Let the function f be defined as:

$$
\begin{array}{rlrl}
f(x) & =1, & & \text { when } x \text { is rational } \\
=-1, & & \text { when } x \text { is irrational }
\end{array}
$$

Show that f is not R -integrable over $[0,1]$ but $|f| \in R[0,1]$.
(c) Show that any constant function defined on a bounded closed inte :val is integrable. 3
3. (p) If f is a bounded and integrable function over [a,b] and M, m are bounds of f over [a,b], prove that :

$$
\begin{equation*}
\mathrm{m}(\mathrm{~b}-\mathrm{a}) \leq \int_{a}^{b} \mathrm{f}(\mathrm{x}) \mathrm{dx} \leq \mathrm{M}(\mathrm{~b}-\mathrm{a}) \tag{4}
\end{equation*}
$$

(q) Prove that $\frac{2}{17}<\int_{-1}^{2} \frac{x}{1+x^{4}} d x<1 / 2$.
(r) If f is continuous and non-negative on $[a, b]$, then show that $\int_{a}^{b} f(x) d x \geq 0$.
4. (a) Prove that the integral $\int_{\mathrm{a}^{+}}^{\mathrm{b}} \frac{\mathrm{dx}}{(\mathrm{x}-\mathrm{a})^{\mathrm{p}}}$ converges if $\mathrm{p}<1$ and diverges if $\mathrm{p} \geq 1$.
(b) Show that $\int_{i}^{\infty} \frac{\sin x}{x^{2}} d x$ converges absolutely.
(c) Show that $\int_{0}^{\infty} \mathrm{e}^{-\mathrm{x}^{2}} d x$ converges.
5. (p) Prove that $\beta(\mathrm{m}, \mathrm{n})=\frac{\sqrt{\mathrm{m} / \mathrm{n}}}{\sqrt{\mathrm{m}+\mathrm{n}}}$.
(q) Prove that $\int_{0}^{\pi / 2} \sin ^{2} \theta \cos ^{4} \theta d \theta=\frac{\pi}{32}$.
(r) Prove that $\sqrt{(n+1)}=n \sqrt{(n)}$.

UNIT-III

6. (a) If $f(z)=u(x, y)+i v(x, y)$ be analytic in a region D, then prove that $u(x, y)$ and $v(x, y)$ satisfy Cauchy-Riemann equations.
(b) If $f(z)$ and $f(\bar{z})$ are analytic functions, prove that $f(z)$ is constant.
(c) Show that $\mathrm{u}=2 \mathrm{x}-\mathrm{x}^{3}+3 \mathrm{xy}^{2}$ is harmonic and find its harmonic conjugate function. Hence find $f(z)=u+i v$.
7. (p) If u and v are harmonic in region R, prove that $\left(\frac{\partial u}{\partial y}-\frac{\partial v}{\partial x}\right)+i\left(\frac{\partial u}{\partial x}-\frac{\partial v}{\partial y}\right)$ is analytic in R.
(q) If the function $\mathrm{f}(\mathrm{z})=\mathrm{u}+$ iv be analytic in domain D then prove that, the family of curves $\mathrm{u}(\mathrm{x}, \mathrm{y})=\mathrm{c}_{1}$ and $\mathrm{v}(\mathrm{x}, \mathrm{y})=\mathrm{c}_{2}$ form an orthogonal system, where c_{1} and c_{2} are arbitrary constants.
(r) Determine a, b, c, d so that the function $f(z)=\left(x^{2}+a x y+b y^{2}\right)+i\left(c x^{2}+d x y+y^{2}\right)$ is analytic.

UNIT-IV

8. (a) Prove that, every bilinear transformation with two non infinite fixed points α, β is of the form $\frac{w-\alpha}{w-\beta}=k \frac{z-\alpha}{z-\beta}$, when k is constant.
(b) Under the transformation $w=\sqrt{2} \mathrm{e}^{i \pi / 4} \mathrm{z}$, find the image of the rectangle bounded by $\mathrm{x}=0, \mathrm{y}=0, \mathrm{x}=2$ and $\mathrm{y}=3$.
(q) Prove that under the transformation $\mathrm{w}=\frac{\mathrm{z}-\mathrm{i}}{\mathrm{iz}-1}$ the region $\mathrm{I}_{\mathrm{in}}(\mathrm{z}) \geq 0$ is mapped into the region $|w| \leq 1$.

UNIT-V

10. (a) Show that $\mathrm{d}(\mathrm{x}, \mathrm{y})=|\mathrm{x}-\mathrm{y}|, \forall \mathrm{x}, \mathrm{y} \in \mathrm{R}$ defines a metric on R.
(b) Define :
(i) Limit point
(ii) Boundary point.
(c) Prove that every neighbourhood is an open set.
11. (p) Define:
(i) Complete metric space
(ii) Open set.
(q) Prove that every convergent sequence in a metric space is a Cauchy sequence.
(r) Let X be a metric space. If $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ and $\left\{\mathrm{y}_{\mathrm{n}}\right\}$ are sequences in X such that $\mathrm{X}_{\mathrm{n}} \rightarrow \mathrm{x}$ and $y_{n} \rightarrow y$ then, prove that $d\left(x_{n}, y_{n}\right) \rightarrow d(x, y)$.
