

www.FirstRanker.com

www.FirstRanker.com

B.Sc. (Part—III) Semester—V Examination PHYSICS

Tir	ne : T	hree	Hou	ırs]			[Maximum Marks: 80
	No	te :-	- (1)	All questions are compu	Isory.		
			(2)	Draw neat labeled diagra	ams wherever	necessary.	
			Co	onstants : m _e = 9.11 × 10	$^{-31}$ kg, h = 6.	63 × 10 ⁻³⁴ Js, m	$= 1.67 \times 10^{-27} \text{ kg}$
1.	(A)	Fill		he blanks :			2
		(i)		e localized structure formed ferent frequencies is called		umber of matter waves of	
		(ii)	The	e diode which works on the	arrier penetration	is called	
		(iii)	In I	Raman spectra, much mor	e intense line	s are	
		(iv)	The	e potential applied to stop	the photoelec	trons is called as	
	(B)	Cho	ose	correct alternative :			2
		(i)	Cor	mpton effect is associated	with:		
			(a)	α-rays	(b)	β-rays	
			(c)	X-rays	(d)	Positive rays	
		(ii)	The	e rate of change of collect	or current wi	th respect to coll	ector leakage current is
			(a)	Current gain	(b)	Stablization	
			(c)	Stability factor	(d)	All of these	
		(iii)	The	radiation counters or dete	ectors are not	operated in	
			(a)	GM region	(b)	Proportional regi	ion
			(c)	Recombination region	(d)	None of these	
		(iv)		en one alpha particle is en onber of daughter nucleus is			omic number and mass
			(a)	Four and Two	(b)	Two and Two	
			(c)	Two and Four	(d)	Four and Four	
	(C)	Ans	wer	in one sentence:		4	
		(i)	Wh	at is phase distortion?			
		(ii)	Wh	at is mass defect?			
		(iii)	Wh	at is nuclear fusion?			
		(iv)	Stat	te the condition for normal	ized wave fun	ction.	
YBC-15306					1		(Contd.)

www.FirstRanker.com

www.FirstRanker.com

	EITE	IER Theory for black body radiation.	4
	(a)	Give assumptions of Planck's Quantum Theory, for black body radiation.	ectric
	(b)	Give assumptions of Planck's Quantum Theory, for one stopping potential in Photoele Discuss the effect of intensity of incident radiation on stopping potential in Photoele	3
	(c)	effect. What is group velocity and phase velocity? Obtain the relation between them.	5
	OR		3
3.	(p)	Explain Wein's displacement law of black body radiation.	3
	(q)	Describe Davisson and Germer experiment to confirm wave nature of electrons.	6
	(r)	Discuss the spectral distribution of black body radiation.	3
	Eľ	THER	
4.	(a)	Write an equation for a wave function associated with free particle. Give its p	hysical
		significance.	4
	(b)	Solve Schrodinger equation for a particle in one dimensional rigid box.	6
		Find the Eigen value and Eigen function:	
	(c)	Find the erergy of the electron in ground state moving in one dimensional box o	f width
		2 A.U.	2
	Ol		
5.	(p)	Obtain a quantum mechanical operator for kinetic energy.	4
	(q)	Derive one dimensional time independent Schrodinger wave equation.	6
	· (r)	Find the lowest energy of a neutron confined to a nucleus of size 10 ⁻¹⁴ m.	2
	EI	THER	
6.	(a)	Explain the concept of space quantization and spin quantization.	4
	(b)	Describe Stern Gerlach experiment and discuss its results.	6
	(c)	What is L-S coupling ?	2
	Ol	3	
7.	(p)	State and explain Moseley's law. Give its importance.	4
	(q)	Describe experiential set up used to study Raman Effect.	4
	(r)	Explain characteristics X-ray spectra and its origin.	4

www.FirstRanker.com

www.FirstRanker.com

EITHER

8.	(a)	Describe the construction and working of nuclear reactor. Write the function of cadmium						
		rods used in it.	5					
	(b)	Explain Pauli's neutrino theory of beta decay.						
	(c)	Draw labeled diagram of G.M. counter with proper graph showing GM region.						
	OR							
9.	(p)	Define:						
		(i) Binding energy of nucleus (ii) Nuclear fusion	*					
		(iii) Dead time in GM counter (iv) Recovery time in GM counter	4					
	(q)	What is nuclear fission?						
	(r)	State Geiger-Nuttal law.						
	(s)	What is beta decay? Explain its modes.	4					
	EIT	HER						
10.	(a)	Obtain any two basic equations of hybrid parameters.						
	(b)	Draw hybrid equivalent circuit for CE amplifier. Obtain and expression for input impedance						
		and current gain of it.	5					
	(c)	What is operating point?	2					
	OR							
11.	(p)	State and explain different types of distortion in amplifier.						
	(q)	Explain Class A, B and C amplifier.						
	HER							
12.	(a)	With proper circuit diagram, explain detailed construction and working of phase shift						
		oscillator.	6					
	(b)	Give the construction and working of monostable multivibrator.						
	(c)	Explain feedback in amplifier.	2					
	OR							
13.	(p)	What is Barkhausen criterion?	2					
	(q)	Draw circuit diagram of Hartley oscillator and explain its working.						
	(r)	Explain the working of Astable multivibrator.						

