B.Sc. Part-III (Semester-VI) Examination
 MATHEMATICS

(Graph Theory)
Paper-XII
Time: Three Hours]
[Maximum Marks : 60
Note :-(1) Question No. 1 is compulsory and attempt it at once only.
(2) Solve ONE question from each unit.

1. Choose the correct alternative in the following :
(i) A connected graph G is an Euler graph iff it can be decomposed into :
(a) Walks
(b) Paths
(c) Cut sets
(d) Circuits
(ii) A subgraph $\mathrm{H}=<\mathrm{V}_{1}, \mathrm{E}_{1}>$ of a graph $\mathrm{G}=<\mathrm{V}, \mathrm{E}>$ is called a spanning subgraph if :
(a) $\mathrm{E}_{1}=\phi$
(b) $\mathrm{V}_{1}=\phi$
(c) $V_{1}=V$
(d) $\mathrm{E}_{1}=\mathrm{E}$
(iii) The concept of a tree was introduced by :
(a) Euler
(b) Hamiltonian
(c) Cayley
(d) Kuratowski
(iv) If G be a circuitless graph with n vertices and k components then G has :
(a) $\mathrm{n}+1$ edges
(b) $\mathrm{n}-1$ edges
(c) $\mathrm{n}+\mathrm{k}$ edges
(d) $\mathrm{n}-\mathrm{k}$ edges
(v) A graph can be embedded in the surface of a sphere iff it can be embedded in: 1
(a) a plane
(b) a circle
(c) a sphere
(d) a straight line
(vi) A complete graph of five vertices is:
(a) Planar graph
(b) Non-planar graph
(c) Null graph
(d) Bipartite graph
(vii) Minimum number of linearly independent vectors that spans the vectors in a vector space W_{G} is called :
(a) Basis of vector space
(b) Dimension of vector space
(c) Span
(d) None of these
(viii) The dimension of the cutspace W_{s} is equal to the rank of the graph and the number of cutset vectors including 0 in W_{s} is :
(a) r
(b) 2^{r}
(c) 3 r
(d) r^{2}
www.FirstRanker.com
(ix) A row with all zeros in incidence matrix represents :
(a) Pendent vertex
(b) Isolated vertex
(c) Odd vertex
(d) Even vertex
(x) If B is a circuit matrix of a connected graph G with n vertices and e edges then rank of B is :
(a) $\mathrm{e}+\mathrm{n}-1$
(b) $\mathrm{e}-\mathrm{n}-1$
(c) $\mathrm{e}+\mathrm{n}+1$
(d) $\mathrm{e}-\mathrm{n}+1$

UNIT-I

2. (a) Define (i) Simple graph, (ii) Degree of a vertex. Show that the maximum number of edges in a simple graph of n vertices is $\frac{n(n-1)}{2}$.
(b) Define isomorphism between two graphs. Prove that any two simple connected graphs with n vertices, all of degree two are isomorphic.
3. (p) From the graph given below answer the following :

(i) Write the degree of each vertex.
(ii) Which edges are incident with the vertex V_{3} ?
(iii) Write the adjacent vertices of V_{5}.
(iv) Is the graph simple ? Why ?
(q) In a graph G there exists a path from the vertex u to the vertex v iff there exists a walk from u to v.

UNIT-II

4. (a) Prove that following statements are equivalent:
(i) There is exactly one path between every pair of vertices in G.
(ii) G is minimally connected graph.
(b) Define : (i) Binary tree, (ii) Rooted tree. Show that there are $(n+1) / 2$ number of pendent vertices in a binary tree with n vertices.
5. (p) Define eccentricity of awwwe centres.
(q) Define spanning tree and find out all possible spanning trees of the following graph.

UNIT-III

6. (a) Define planar graph. If G is planar graph with n vertices, e edges, f faces and k components then prove that $\mathrm{n}-\mathrm{e}+\mathrm{f}=\mathrm{k}+1$. $\quad 1+4$
(b) Prove that every cutset in a connected graph G must contain at least one branch of every spanning tree of a graph G.
7. (p) Define fundamental circuits for the following graph G, find rank of G, nullity of G and fundamental circuits with reference to the spanning tree : $T=\left\{b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}\right\}$.

Graph G

(q) Show that Kuratowski's $\mathrm{K}_{3,3}$ graph is non-planar.

UNIT-IV

8. (a) Prove that in the vector space of a graph the circuit subspace and cutset subspace are orthogonal to each other.
(b) For a graph G with spanning tree $T=\left\{e_{1}, e_{2}\right\}$ find $W_{G}, W_{s}, W_{\Gamma}, W_{\Gamma} \cap W_{s}$ and $\mathrm{W}_{\Gamma} \cup \mathrm{W}_{\mathrm{s}}$.

9. (p) Prove that the set W_{Γ} of all circuit vectors including zero vector in W_{G} form a subspace of W_{G}.
(q) Let G be a graph given as in figure. Find $W_{\Gamma}, W_{S}, W_{\Gamma} \cap W_{s}$ and $W_{\Gamma} \cap W_{S}$ where W_{Γ} is a circuit subspace and W_{S} is a cutset subspace.

10. (a) Prove that the reduced incidence matrix of graph is non-singular iff the graph is a tree.
(b) Define circuit matrix. Find the circuit matrix of the graph.

11. (p) Find incidence matrix $\mathrm{A}(\mathrm{G})$, circuit matrix $\mathrm{B}(\mathrm{G})$ and show that $A B^{\mathrm{T}}=0$, for the following graph.

Graph G

(q) Define the Adjacency matrix. Find the Adjacency matrix of he following graph. $1+4$

