

www.FirstRanker.com

www.FirstRanker.com AW-1761

B.Sc. Part-III (Semester-VI) Examination MATHEMATICS (Graph Theory)

	raper—A			
Time: Thre	ee Hours]		[Maximum Marks : 6	0
Note :- (1)	Question No. 1 is compulsory and at	ttemp	t it at once only.	
(2)	Solve ONE question from each unit.			
 Choose 	the correct alternative in the following	g :		
(i) A	connected graph G is an Euler graph if	ff it c	can be decomposed into:	ŀ
(a)) Walks	(b)	Paths	
(c)	Cut sets	(d)	Circuits	
. (ii) A	subgraph $H = \langle V_1, E_1 \rangle$ of a graph G	j = <	V, E > is called a spanning subgrap	h
if	:		1	l
(a)	$E_t = \phi$	(b)	$V_1 = \phi$	
(c)) V ₁ = V	(d)	$E_i = E$	
(iii) Th	ne concept of a tree was introduced by	1		l
(a)) Euler	(b)	Hamiltonian	
(c)) Cayley	(d)	Kuratowski	
(iv) If	G be a circuitless graph with n vertices	s and	k components then G has:	1
(a)	n + 1 edges	(b)	n - 1 edges	
(c)	n + k edges	(d)	n - k edges	
(v) A	graph can be embedded in the surface	of a	sphere iff it can be embedded in :	l
(a)) a plane	(b)	a circle	
(c)) a sphere	(d)	a straight line	
(vi) A	complete graph of five vertices is :		J	1
(a)) Planar graph	(b)	Non-planar graph	
2.5) Null graph		Bipartite graph	
	inimum number of linearly independent			or
	ace W _G is called :			1
(a)		(b)	Dimension of vector space	
(c)) Span	(d)	None of these	
(viii) Th	ne dimension of the cutspace Ws is equa	l to t	he rank of the graph and the number	of
	tset vectors including 0 in Ws is:			1
(a)) r	(b)	2 ^r	
(c)) 3 ^r	(d)	r ²	

www.FirstRanker.com

www.FirstRanker.com

(ix) A row with all zeros in incidence matrix represents :

(a) Pendent vertex

(b) Isolated vertex

(c) Odd vertex

- (d) Even vertex
- (x) If B is a circuit matrix of a connected graph G with n vertices and e edges then rank of B is:

(a) e + n - 1

(b) e - n - 1

(c) e + n + 1

(d) e-n+1

UNIT-I

- (a) Define (i) Simple graph, (ii) Degree of a vertex. Show that the maximum number of edges in a simple graph of n vertices is n(n-1)/2.
 - (b) Define isomorphism between two graphs. Prove that any two simple connected graphs with n vertices, all of degree two are isomorphic.
 2+3
- 3. (p) From the graph given below answer the following:

- (i) Write the degree of each vertex.
- (ii) Which edges are incident with the vertex V, ?
- (iii) Write the adjacent vertices of V.

(iv) Is the graph simple ? Why ?

1+1+1+2

(q) In a graph G there exists a path from the vertex u to the vertex v iff there exists a walk from u to v.
5

UNIT-II

- 4. (a) Prove that following statements are equivalent :
 - (i) There is exactly one path between every pair of vertices in G.
 - (ii) G is minimally connected graph.

5

(b) Define: (i) Binary tree, (ii) Rooted tree. Show that there are (n + 1)/2 number of pendent vertices in a binary tree with n vertices.
2+3

(p) Define eccentricity of awwwexirstRankeracevery tree was citetRankeraceway
centres.

(q) Define spanning tree and find out all possible spanning trees of the following graph.

UNIT-III

- (a) Define planar graph. If G is planar graph with n vertices, e edges, f faces and k components then prove that n - e + f = k + 1.
 - (b) Prove that every cutset in a connected graph G must contain at least one branch of every spanning tree of a graph G.
 5
- (p) Define fundamental circuits for the following graph G, find rank of G, nullity of G and fundamental circuits with reference to the spanning tree: T = {b₁, b₂, b₃, b₄, b₅, b₆}.
 1+4

Graph G

(q) Show that Kuratowski's K33 graph is non-planar.

UNIT-IV

5

- (a) Prove that in the vector space of a graph the circuit subspace and cutset subspace are orthogonal to each other.
 - (b) For a graph G with spanning tree $T = \{e_1, e_2\}$ find W_G , W_S , W_Γ , $W_\Gamma \cap W_S$ and $W_\Gamma \cup W_S$.

 (p) Prove that the set W_Γ of all circuit vectors including zero vector in W_G form a subspace of W_G.

YBC—15329 3 (Contd.)

(q) Let G be a graph given as in figure. Find W_{Γ} , W_{S} , $W_{\Gamma} \cap W_{S}$ and $W_{\Gamma} \cap W_{S}$ where W_{Γ} is a circuit subspace and W_{S} is a cutset subspace.

- (a) Prove that the reduced incidence matrix of graph is non-singular iff the graph is a tree.
 - (b) Define circuit matrix. Find the circuit matrix of the graph.

(p) Find incidence matrix A(G), circuit matrix B(G) and show that AB^T = 0, for the following graph.

(q) Define the Adjacency matrix. Find the Adjacency matrix of the following graph. 1+4

YBC 15329

1+4