B.Sc. Part-III (Semester-VI) Examination

MATHEMATICS

(Linear Algebra)

Paper—XI							
Tim	ne : T	hree	Hours]		[Maximum Marks: 60		
Note:—(1) Question No. 1 is compulsory and attempt this question once only.							
		(2)	Attempt ONE question from each un	nit.			
1. Choose the correct alternative (1 mark each):							
	(i) S is a non-empty subset of vector space V, then the smallest subspace of V containing						
		S is					
		(a)	S	(b)	{S}		
		(c)	[S]	(d)	None		
(ii) Let U and V be finite dimensional vector spaces and $T:U\to V$ be a linear map							
		one	and onto, then:				
		(a)	$\dim U = \dim V$	(b)	dim U ≠ dim V		
		(c)	U = V	(d)	$U \neq d$		
(iii) Let W is subspace of vector space V. Then $\{f \in \hat{V}/f(w) = 0, \forall w \in W\}$ is called							
		(a)	Hilatory of W	(b)	Annihilator of W		
		(c)	Dual space of W	(d)	None		
	(iv)	The	normalized vector $(1, -2, 5)$ is :				
		(a)	(1, -2, 5)	(b)	$\left(\frac{1}{\sqrt{30}}, \frac{-2}{\sqrt{30}}, \frac{.5}{\sqrt{30}}\right)$		
		(c)	$\left(\frac{1}{2},-1,\frac{5}{2}\right)$	(d)	$\left(\frac{1}{5}, \frac{-2}{5}, 1\right)$		
	(v)	In I	PS V(F) the relation $ u + v ^2 + u$	- v	$\ ^2 = 2 (\ \mathbf{u} \ ^2 + \ \mathbf{v} \ ^2)$ is called as:		
		(a)	Schwartz inequality	(b)	Triangle law		
		(c)	Parallelogram law	(d)	Bessels inequality		
	(vi)	For	two subspaces U and W of V(F), V	= U	⊕ W ⇔		
		(a)	$U \cap W = \{0\}$	(b)	V = U + W		

(d) None of these

(c) $U \cap W = \{0\} \text{ and } V = U + W$

	(vii) Let $T: M \to N$ be an R-homomorphism. If B is a submodule of N, then:						
		(a) T-1(B) is submodule of N	(b)	T-1(B) is submocule of M			
		(c) $T^{-1}(B)$ is kernel of R-homomorphism	(d)	$T^{-1}(B) = T(M)$			
	(viii)	(viii) If $T: U \to V$ then the set $\{T(u) \mid u \in U\} = \dots$					
		(a) Ker Γ	(b)	R(u)			
		(c) R(T)	(d)	None of these			
	(ix)	If $\ V\ = 1$, then V is called:					
		(a) Normalised	(b)	Orthonormal			
		(c) Scalar inner product	(d)	Standard inner product			
	(x) If \hat{V} is n-dimensional, then the dimension of V is :						
		(a) Less than n	(b)	Greater than n			
		(c) Equal n	(d)	Zero 10			
		UNIT-	I				
2.	(a)	Let U and W be two subspaces of a ve-	ctor	space V and $Z = U + W$. Then prove			
		that $Z = U \oplus W$ iff $z \in Z$, $z = u + v$	w is	120 (C)			
		w ∈ W.		5			
	(b)		1, 1	$(1, 1) (1, 2, 1, 2)$ in V_4 to a basis for			
3.	(n)	V ₄ . If U and W are finite dimensional subsections.	2005				
٥.	 (p) If U and W are finite dimensional subspaces of vector space V, then prove t dim(U + W) = dim U + dim W - dim(U ∩ W). 						
	(a)						
	(4)	Let R ⁺ be the set of all positive real numb scalar multiplication \otimes as follows:	CIS. 1	Define the operations of addition & and			
		$\mathbf{u} \oplus \mathbf{v} = \mathbf{u} \cdot \mathbf{v} + \mathbf{u}, \ \mathbf{v} \in \mathbf{R}^+$					
		and $\alpha \otimes u = u^{\alpha}, \forall u \in R^{+} \text{ and } \alpha \in R$					
		Prove that R ⁺ is a real vector space.		5			
		UNIT	ΙĪ	ž			
4.	(a)	If U, V is a vector space over a field F and		$U \rightarrow V$ be a linear, then prove that :			
		$T(\alpha_1 u_1 + \alpha_2 u_2 + \dots + \alpha_n u_n) = \alpha_1 T(u_1) + \alpha_2 T(u_2) + \dots + \alpha_n T(u_n)$					
		11 22 11 17		$u_i \in U, \alpha_i \in F, 1 \le i \le n \text{ and } n \in N.$			
				2			
	(b)	Let $T: V_4 \to V_3$ be a linear map define	ed by	$T(e_1) = (1, 1, 1), T(e_2) = (1, -1, 1).$			
		$T(e_3) = (1, 0, 0), T(e_4) = (1, 0, 1).$					

YBC—15328 2 (Contd.)

Verify Rank-nullity theorem.

4

(c) Find the matrix of the linear map $T: V_2 \rightarrow V_3$ defined by T(x, y) = (-x + 2y, y, -3x + 3y)related to the bases $B_1 = \{(1, 2), (-2, 1)\}$ and $B_2 = \{(-1, 0, 2), (1, 2, 3), (1, -1, 1)\}$.

- (p) Let U and V be vector spaces over the same field F. Then prove that 5. function T: U \rightarrow V is linear iff $T(\alpha u + \beta v) = \alpha T(u) + \beta T(v), <math>\forall \alpha, \beta \in F$ and $u, v \in U$.
 - (q) If matrix of a linear map T with respect to bases B₁ and B₂ is :

$$\begin{bmatrix} -1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$$

where $B_1 = \{(1, 2, 0), (0, -1, 0), (1, -1, 1)\}$ and $B_2 = \{(1, 0), (2, -1)\}$, then find T(x, y, z).

UNIT-III

(a) Let V be the space of all real valued continuous functions of real variable. Define 6. $T: V \rightarrow V$ by

$$(T f)(x) = \int_{0}^{x} f(t) dt, \forall f \in V, x \in R.$$

Show that T has no eigen value.

5 (b) Prove that if V be a finite dimensional vector space over F and $v(\neq 0) \in V$, then

5

 $\exists f \in \hat{V} \text{ such that } f(v) \neq 0.$

- (p) If W, and W, are subspaces of a finite dimensional vector space V, show that 7. $A(W_1 + W_2) = A(W_1) \cap A(W_2).$ 5
 - (q) If K, is eigenspace, then prove that K, is a subspace of vector space V. 3
 - 2 (r) Define characteristic root and characteristic vector.

UNIT-IV

(a) In $F^{(n)}$ define for $u = (\alpha_1, \alpha_2, \alpha_3, \dots, \alpha_n)$ and $v = (\beta_1, \beta_2, \dots, \beta_n)$ 8.

$$(u, v) = \alpha_1 \overline{\beta}_1 + \alpha_2 \overline{\beta}_2 + \dots + \alpha_n \overline{\beta}_n$$
.

Show that this defines an inner product.

(b) If $\{x_1, x_2, x_3, \dots, x_n\}$ be an orthogonal set, then prove that :

$$\| \mathbf{x}_1 + \mathbf{x}_2 + \mathbf{x}_3 + \dots + \mathbf{x}_n \|^2 = \| \mathbf{x}_1 \|^2 + \| \mathbf{x}_2 \|^2 + \dots + \| \mathbf{x}_n \|^2$$

- (c) Prove that orthogonal complement i.e. W[⊥] is subspace of V. 2
- (p) If $\{w_1, w_2, \dots, w_m\}$ is an orthonormal set in V, then $\sum_{i=1}^{m} |(w_i, v)|^2 \le ||v||^2$ for any 9.

 $v \in V$.

Firstranker's choice (q) If V is a finite dimensional inner product space and W is a surspace of V then prove that $(W^{\perp})^{\perp} = W$. (r) (i) Define inner product in vector space. (ii) Define orthogonal set.

UNIT-V

- 10. (a) Let A be a submodule of an R-module M and T is a mapping from M into M/A defined by T_m = A + m, ≠ m ∈ M. Then prove that T is an R-homomorphism of M into M/A and ker T = A.
 - (b) Let T be a homomorphism of an R-module M to an R-module H. Prove that T is one-one iff ker $T = \{0\}$.
 - (c) Define:
 - (i) Submodule
 - (ii) Unital R-module.

11. (p) If A and B are submodules of M, then prove that $\frac{A+B}{B}$ is isomorphic to

$$\frac{A}{A \cap B}$$
.

(q) Prove that arbitrary intersection of submodules of a module is a submodule. 4

2