

www.FirstRanker.com

B.Sc. Part-III (Semester-VI) Examination

MATHEMATICS

(Special Theory of Relativity)

Paper-XII

Time: Three Hours] [Maximum Marks: 60

Note:—(1) Question No. 1 is compulsory, attempt once.

- (2) Attempt ONE question from each unit.
- 1. Choose the correct alternative :
 - (i) The interval $ds^2 = -(dx')^2 (dx^2)^2 (dx^3)^2 + (dx^4)^2$ is said to be space like if: 1
 - (a) $ds^2 > 0$

(b) $ds^2 < 0$

(c) $ds^2 = 0$

- (d) None of these
- (ii) The electric and magnetic field strengths E and H are invariant under:
 - (a) Galilean Transformations
- (b) Laplace Transformations
- (c) Fourier Transformations
- (d) Guage Transformations

(iii)
$$A^i = (\overline{A}, \phi) = (Ax, Ay, Az, \phi)$$
 is a four potential then :

1

(a) $A_i = (\overline{A}, \phi)$

(b) $A_i = (\overline{A}, -\phi)$

(c) $A_i = (-\overline{A}, \phi)$

- (d) $A_i = (-\overline{A}, -\phi)$
- (iv) $A^r = (A^1, A^2, A^3, A^4)$ is a four vector or four dimensional vector where $A^2 < 0$ then A^r is:
 - (a) Time like

(b) Null or light like

(c) Space like

- (d) None of these
- (v) Covariant tensor of rank one T', is defined as :

1

(a)
$$T'_r = \frac{\partial x'^r}{\partial x^5} T_s$$

(b)
$$T'_r = \frac{\partial x'^r}{\partial x^5} T_r$$

(c)
$$T'_r = \frac{\partial x^5}{\partial x'^r} T_s$$

(d)
$$T'_r = \frac{\partial x^5}{\partial x'^r} T_r$$

- (vi) The special Lorentz transformations will reduce to simple Galilean transformations when:
 - (a) V = C

(b) C < < V

(c) V << C

(d) None of these

First nanker & Chaige tic field tensor (or Maxwell tensor) Fig. is defined as : www.FirstRanker.com

(a)
$$F_{ij} = \frac{\partial A_i}{\partial x^j} - \frac{\partial A_j}{\partial x^i}$$

(b)
$$F_{ij} = \frac{\partial A_j}{\partial x^i} - \frac{\partial A_i}{\partial x^j}$$

(c)
$$F_{ij} = \frac{\partial A_i}{\partial x^j} + \frac{\partial A_j}{\partial x^i}$$

(d) None of these

(viii) The transformations $\bar{r}' = \bar{r} - \bar{v}t$ and t' = t are :

1

- (a) Laplace transformations
- (b) Lorentz transformations
- (c) Galilean transformations
- (d) None of these

(ix) If A is a vector potential then the magnetic field is:

1

(a) $\overline{H} = \text{div.} \overline{A}$

(b) $\overline{H} = \text{Curl } \overline{A}$

(c) $\overline{H} = \text{div.}(\text{Curl }\overline{A})$

(d) None of these

(x) Four velocity of a particle is:

1

- (a) a unit space-like vector
- (b) a unit time-like vector
- (c) a unit light-like vector
- (d) None of these

UNIT-I

- 2. Obtain Galilean transformation equations for two inertial frames in relative 3 motion.
 - (b) Show that simultaneity is relative in special relativity.

3

Show that the electromagnetic wave equation:

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} - \frac{1}{c^2} \frac{\partial^2 f}{\partial t^2} = 0$$

is not invariant under the Galilean transformations.

4

(p) Discuss the geometrical interpretation of Lorentz transformations.

4

- (q) Prove that $\nabla^2 \frac{1}{c^2} \frac{\partial^2}{\partial t^2}$ is invariant under special Lorentz transformations.
 - Show that $x^2 + y^2 + z^2 c^2t^2$ is Lorentz invariant.

2

4

UNIT-II

4. Obtain the transformations for the velocity of a particle under special Lorentz transformations. 5

(b) If \bar{u} and \bar{u}' be the velocities of what its temperature from where s' is moving with velocity v relative to s along the XX' axis then show that:

$$\tan \theta' = \frac{\sin \theta \left(1 - \frac{v^2}{c^2}\right)^{1/2}}{\cos \theta - \frac{v}{u}}$$

and

$$u^{'2} = \frac{u^{2} \left[1 - 2\frac{v}{u}\cos\theta + \frac{v^{2}}{u^{2}} - \frac{v^{2}}{c^{2}}\sin^{2}\theta \right]}{\left(1 - \frac{uv}{c^{2}}\cos\theta \right)^{2}}$$

where θ and θ' are the angles made by u and u' with the X-axis respectively.

5. (p) If \(\overline{u}\) and \(\overline{u}\)' be the velocities of a particle in two inertial systems s and s' respectively then prove that:

$$\sqrt{1 - \frac{u^2}{c^2}} = \frac{\sqrt{1 - \frac{{u'}^2}{c^2}} \sqrt{1 - \frac{v^2}{c^2}}}{\left(\frac{1 + u'_x \ v}{c}\right)},$$

where s' is moving with velocity v relative to s along XX' axis.

(q) Show that in nature no signal can move with a velocity greater than the velocity of light relative to any inertial system.

UNIT—III

- (a) Define time-like, space-like and light-like intervals for the space time geometry of special relativity.
 - (b) Define a four tensor of the second order. Prove that :

(i)
$$T^{11} = \alpha^2 \left\{ T^{11} - \frac{v}{c} T^{14} - \frac{v}{c} T^{41} + \frac{v^2}{c^2} T^{44} \right\}$$
 and

(ii)
$$T^{14} = \alpha^2 \left\{ -\frac{v}{c} T^{11} + T^{14} + \frac{v^2}{c^2} T^{41} - \frac{v}{c} T^{44} \right\}$$
 1+3+3

7. (p) Define a four vector Ar. Show that :

$$A^1 = -A_1, A^2 = -A_2, A^3 = -A_3, A^4 = A_4.$$
 1+3

5

the same time if the interval between two events is space-like.

First Parker Com and the same time if the interval between two events is space-like.

(r) Write the Lorentz transformations in index form.

2

UNIT--IV

- 8. (a) Deduce Einstein's mass energy equivalence relation.
 - (b) Define: Four velocity. Prove that the four velocity in component form can be expressed as:

$$u^{i} = \left(\frac{\overline{u}}{c\sqrt{1-u^{2}/c^{2}}}, \frac{1}{\sqrt{1-u^{2}/c^{2}}}\right)$$

where $\overline{u} = (u_x, u_y, u_z) = \text{velocity of the particle.}$

1+4

- (p) Define: Four momentum vector pⁱ. Prove that the square of the magnitude of the four momentum vector pⁱ is m² o c².
 - (q) A particle is given a kinetic energy equal to n times its rest energy $m \circ c^2$. Find speed and momentum of the particle.

 (Kinetic energy = $T = m \circ c^2 \left\{ \frac{1}{\sqrt{1 v^2/c^2}} 1 \right\}$

UNIT-V

10. (a) Show that the Hamiltonian for a charged particle moving in an electromagnetic field is:

$$H = \left\{ m^2 c^4 + c^2 \left(p - \frac{e}{c} A \right)^2 \right\}^{1/2} + e\phi.$$
 5

- (b) Define : Current four vector. Show that $c^2p^2 J^2$ is invariant and its value is $\rho^2 \circ c^2$.
- 11. (p) Prove that the set of Maxwell's equations div. $\overline{H} = 0$ and $\overline{E} = -\frac{1}{c} \frac{\partial \overline{H}}{\partial t}$ can be written

as
$$\frac{\partial F_{ij}}{\partial x^k} + \frac{\partial F_{jk}}{\partial x^i} + \frac{\partial F_{ki}}{\partial x^j} = 0$$
, where F_{ij} is the electro-magnetic field tensor.

(q) Define electromagnetic field tensor F_{ij} . Express the components of F_{ij} in terms of the electric and magnetic field strengths.

YBC-15330