

www.FirstRanker.com

www.FirstRank@Acom764

B.Sc. (Part-III) Semester-VI Examination 6S-PHYSICS

(Statistical Mechanics and Solid State Physics)

Tir	ne : T	hree !	[Maximum Marks: 80	
			Note :- Attempt all questions.	
1.	(A)	Fill	in the blanks :	. 2
		(i)	The phase space of N particles have dimension	ons.
		(ii)	Quantum statistics is applicable to identical and	_ particles.
		(iii)	Schottky defects are defects.	
		(iv)	Superconductors are perfectly	
	(B)	Cho	oose correct alternative of the following:	2
		(i)	Pauli's exclusion principle is applicable to :	
			(a) M-B statistics	
			(b) B-E statistics	
			(c) F-D statistics	
			(d) None of these	
		(ii)	Structure of NaCl crystal is :	
			(a) BCC	
			(b) FCC	
			(c) Simple cubic	
			(d) Hexagonal	
		(iii)	For diamagnetic materials, magnetic susceptibility is:	
			(a) small and negative	
			(b) small and positive	
			(c) large and negative	
			(d) large and positive	
		(iv)	Nanometer is equal to :	
			(a) 10 ⁻³ m	
			(b) 10-6m	
			(c) 10 ⁻⁷ m	
			(d) 10 ⁻⁹ m	
	(C)	Ans	wer the following in one sentence :	4
		(i)	What are Bosons ?	
		(ii)	What is point defect?	
		(iii)	What is Curie temperature ?	
		(iv)	On what factors properties of nanomaterial depend ?	
			•	

www.FirstRanker.com

www.FirstRanker.com

- (A) Write expression for thermodynamic probability in M-B distribution and find expression for M-B distribution law.
 - (B) By using M-B distribution law of molecular speed show that root mean square speed of gas
 - molecule is given by $V_{ms} = \sqrt{\frac{3 \, kT}{m}}$. 4
 - (C) Find the thermodynamic probability for four distinguishable particles for the microstate (2, 2).

OR

- (P) State and explain principle of priori probability. 3.
 - (Q) Show that most probable velocity of gas molecule is $V_p = \sqrt{\frac{2kT}{r_1}}$.
 - (R) Explain the terms:
 - Thermodynamic probability
 - (ii) Statistical weight.

4

2

EITHER

- (A) What are the main postulates of Fermi-Dirac statistics?
 - (B) Using Bose-Einstein distribution law, deduce an expression for Planck's law of energy distribution in black body radiation.
 - (C) What is Fermi energy?

- (P) Explain the concept of distinguishable and indistinguishable particles.
 - (Q) Obtain an expression for Fermi-Dirac distribution law by assuming thermodynamic probability. 5
 - (R) What is Fermi function? How it behaves at absolute zero? 4

EITHER

- (A) Define unit cell of crystal. Explain primitive and non-primitive unit cell. 4
 - (B) Derive Bragg's law for diffraction of X-rays.
 - (C) What is line defect in crystal? Explain the screw dislocation in crystal with neat diagram.

OR

- (P) Give the names of seven crystal systems and state the parameters of their unit cells.
 - (Q) What are Miller indices? Find Miller indices of the plane having intercepts (a, 2b, c/2).
 - 2 (R) What is reciprocal lattice?

EITHER

- (A) Obtain an expression for electrical conductivity in terms of mean free path of electrons.
 - (B) Discuss formation of insulator, semiconductor and conductor on the basis of band theory of solid.
 - (C) What are conduction electrons?

9.	(P)	Explain the motion of electron in metals and hence derive an expression for drift velo	ocity of
		electron.	5
	(Q)	Explain qualitatively conduction band, valence band and energy gap in solids.	4
	(R)	Explain nearly free electron model.	3
	EIT	HER	
10.	(A)	State properties of paramagnetic materials.	4
	(B)	Explain ferromagnetism on the basis of domain theory.	4
	(C)	What is magnetic dipole moment? Obtain an expression for orbital magnetic dipole m	noment.
			4
	OR		
11.	(P)	Give Langevin's theory of paramagnetism; hence prove that the susceptibility of paramagnetism is inversely proportional to absolute temperature.	agnetic 8
	(Q)	State properties of diamagnetic material.	4
		HER	
12.	(A)	Give brief idea of BCS theory of superconductivity.	. 6
	(B)	Explain type-I and type-II superconductor.	4
	(C)	Define:	2
		(i) Critical temperature	
		(ii) Critical magnetic field.	
	OR		
13.	(P)	Explain importance of surface to volume ratio and quantum size effect in nanomate	rials. 6
	(Q)		4
	(R)	What are nanomaterials?	2

www.FirstRanker.com

www.FirstRanker.com